A view from Down Under

Melbourne Seventh City of Empire, part of the Australia 1930s Exhibition at National Gallery of Victoria
Melbourne Seventh City of Empire, part of the “Brave New World: Australia 1930s” Exhibition at National Gallery of Victoria

I’ve spent the last two week in Australia thanks to a trip to the Royal Australian Chemical Institute 100th Annual Congress in Melbourne. I attended the Chemistry Education symposium.

So what is keeping chemistry educators busy around this part of the world? There are a lot of similarities, but some differences. While we wrestle with the ripples of TEF and the totalitarian threat of learning gains, around here the acronym of fear is TLO: threshold learning outcomes.  As I understand it, these are legally binding statements stating that university courses will ensure students will graduate with the stated outcomes. Institutions are required to demonstrate that these learning outcomes are part of their programmes and identify the level to which they are assessed. This all sounds very good, except individuals on the ground are now focussing on identifying where these outcomes are being addressed. Given that they are quite granular, this appears to be a huge undertaking and is raising questions like: where and to what extent is teamwork assessed in a programme?

Melbourne from the Shrine
Melbourne from the Shrine

This process does appear to have promoted a big interest in broader learning outcomes, with lots of talks on how to incorporate transferable skills into the curriculum, and some very nice research into students’ awareness of their skills. Badges are of interest here and may be a useful way to document these learning outcomes in a way that doesn’t need a specific mark. Labs were often promoted as a way of addressing these learning outcomes, but I do wonder how much we can use labs for learning beyond their surely core purpose of teaching practical chemistry.

Speaking of labs, there was some nice work on preparing for laboratory work and on incorporating context into laboratory work. There was (to me) a contentious proposal that there be a certain number of laboratory activities (such as titrations) that are considered core to a chemist’s repertoire, and that graduation should not be allowed until competence in those core activities be demonstrated. Personally I think chemistry is a broader church than that, and it will be interesting to watch that one progress. A round-table discussion spent a good bit of time talking about labs in light of future pressures of funding and space; and it does seem that we are still not quite clear about what the purpose of labs are. Distance education – which Australia has a well-established head start in – was also discussed, and I was really glad to hear someone with a lot of experience in this say that it is possible to generate a community with online learners, but that it takes a substantial personal effort. The lab discussion continued to the end, with a nice talk on incorporating computational thinking into chemistry education, with suggestions on how already reported lab activities might be used to achieve this.

Gwen Lawrie delivers her Award Address
Gwen Lawrie delivers her Award Address

Of course it is the personal dimension that is the real benefit of these meetings, and it was great to meet some faces old and new. Gwen Lawrie wasn’t on the program as the announcement of her award of Education Division Medal was kept secret for as long as possible. I could listen to Gwen all day, and her talk had the theme “Chasing Rainbows”, which captured so eloquently what it means to be a teacher-researcher in chemistry education, and in a landscape that continues to change. [Gwen’s publications are worth trawling] Gwen’s collaborator Madeline Schultz (a Division Citation Winner) spoke about both TLOs and on reflections on respected practitioners on their approaches to teaching chemistry – an interesting study using a lens of pedagogical content knowledge. From Curtin, I (re-)met Mauro Mocerino (who I heard speak in Europe an age ago on clickers) who spoke here of his long standing work on training demonstrators. Also from that parish, it was a pleasure to finally meet Dan Southam. I knew Dan only through others; a man “who gets things done” so it was lovely to meet him in his capacity as Chair of the Division and this symposium, and to see that his appellation rang true. And it was nice to meet Elizabeth Yuriev, who does lovely work exploring how students approach physical chemistry problem and on helping students with problem solving strategies.

Dinner Date
Dinner Date

There were lots of other good conversations and friendly meetings, demonstrating that chemistry educators are a nice bunch regardless of location. I wasn’t the only international interloper; Aishling Flaherty from University of Limerick was there to spread her good work on demonstrator training – an impressive programme she has developed and is now trialling in a different university and a different country. And George Bodner spoke of much of his work in studying how students learn organic chemistry, and in particular the case of “What to do about Parker”. The memory of Prof Bodner sitting at the back of my talk looking at my slides through a telescopic eye piece is a happy one that will stay with me for a long time. Talk of organic chemistry reminds me of a presentation about the app Chirality – 2 which was described – it covers lots of aspects about revising organic chemistry, and looked really great.

The Pioneer, National Gallery of Victoria
The Pioneer, National Gallery of Victoria

My slightly extended trip was because I had the good fortune to visit the research group of Prof Tina Overton, who moved to Melbourne a few years ago, joining native Chris Thompson in growing the chemistry education group at Monash. It was an amazing experience immersing in a vibrant and active research group, who are working on things ranging from student critical thinking, chemists’ career aspirations, awareness of transferable skills, and the process and effect of transforming an entire laboratory curriculum. I learned a lot as I always do from Tina and am extremely grateful for her very generous hosting. I leave Australia now, wondering if I can plan a journey in 2018 for ICCE in Sydney.

From Hokusai exhibition, NGV
From Hokusai exhibition, NGV. My interpretation of students managing in a complex learning environment

Mayer’s Principles: Using multimedia for e-learning (updated 2017)

Anyone involved in e-learning will know of the cognitive theory of multimedia learning, which draws together information processing model (dual coding), cognitive load theory (working memory), and the notion of active processing. You can read a little more of this in this (old) post.

Anyway, for most of us who don’t do full on e-learning, Mayer’s principles have value when we make things like videos or multimedia that we wish the students to interact with outside of their time with us. As such, Mayer’s principles, as reported in The Cambridge handbook of multimedia learning are well cited. Mayer has just published an update (HT to the wonderful new Twitter feed: https://twitter.com/CogSciLearning), and because I have nothing better to do than twiddle my thumbs for the summer (thank you Adonis), I made a graphic summarising the 12 principles he describes. Many seem obvious but that is probably no bad thing; as well as thinking about videos, there might be some lessons about PowerPointing here too. Click on the image to embiggen.

Mayer’s Principles: Using multimedia for e-learning (from Mayer, R. E. (2017) Using multimedia for e-learning. Journal of Computer Assisted Learning, doi: 10.1111/jcal.12197)
Mayer’s Principles: Using multimedia for e-learning (from Mayer, R. E. (2017) Using multimedia for e-learning. Journal of Computer Assisted Learning, doi: 10.1111/jcal.12197)

Revising functional groups with lightbulb feedback

I’m always a little envious when people tell me they were students of chemistry at Glasgow during Alex Johnstone’s time there. A recent read from the Education in Chemistry back-catalogue has turned me a shade greener. Let me tell you about something wonderful.

The concept of working memory is based on the notion that we can process a finite number of new bits in one instance, originally thought to be about 7, now about 4.  What these ‘bits’ are depend on what we know. So a person who only knows a little chemistry will look at a complex organic molecule and see lots of carbons, hydrogens, etc joined together. Remembering it (or even discussing its structure/reactivity) would be very difficult – there are too many bits. A more advanced learner may be able to identify functional groups, where a group is an assembly or atoms in a particular pattern; ketones for example being an assembly of three carbons and an oxygen, with particular bonding arrangements. This reduces the number of bits.

Functional groups are important for organic chemists as they will determine the reactivity of the molecule, and a challenge for novices to be able to do this is to first be able to identify the functional groups. In order to help students practise this, Johnstone developed an innovative approach (this was 1982): an electronic circuit board.

Functional Group Board: Black dots represent points were students needed to wire from name to example of functional group
Functional Group Board: Black dots represent points were students needed to wire from name to example of functional group

The board was designed so that it was covered with a piece of paper listing all functional groups of interest on either side, and then an array of molecules in the middle, with functional groups circled. Students were asked to connect a lead from the functional group name to a matching functional group, and if they were correct, a lightbulb would flash.

A lightbulb would flash. Can you imagine the joy?!

Amide backup card
Amide backup card

If not, “back-up cards” were available so that students could review any that they connected incorrectly, and were then directed back to the board.

The board was made available to students in laboratory sessions, and they were just directed to play with it in groups to stimulate discussion (and so as “not to frighten them away with yet another test”). Thus students were able to test out their knowledge, and if incorrect they had resources to review and re-test. Needless to say the board was very popular with students, such that more complex sheets were developed for medical students.

Because this is 1982 and pre-… well, everything, Johnstone offers instructions for building the board, developed with the departmental electrician. Circuit instructions for 50 x 60 cm board were given, along with details of mounting various plans of functional groups onto the pegboard for assembly. I want one!

 

Reference

A. H. Johnstone, K. M. Letton, J. C. Speakman, Recognising functional groups, Education in Chemistry, 1982, 19, 16-19. RSC members can view archives of Education in Chemistry via the Historical Collection.

Why do academics use technology in teaching?

This week is All Aboard week in Ireland, essayed at “Building Confidence in Digital Skills for Learning”. I am speaking today in the gorgeous city of Galway on this topic, and came across this paper in a recent BJET which gives some useful context. It summarises interviews with 33 Australian academics from various disciplines, on the topic of why they used technology in assessment. While the particular lens is on assessment, I think there are some useful things to note for those espousing the incorporation of technology generally.

Four themes emerge from the interviews

The first is that there is a perceived cost-benefit analysis at play; the cost of establishing an assessment process (e.g. quizzes) was perceived to be offset by the benefit that it would offer, such as reducing workload in the long-run. However, some responses suggest that this economic bet didn’t pay off, and that lack of time meant that academics often took quick solutions or those they knew about, such as multiple choice quizzes.

The second theme is that technology was adopted because it is considered contemporary and innovative; this suggests a sense of inevitability of using tools as they are there. A (mildly upsetting) quote from an interview is given:

“It would have been nice if we could have brainstormed what we wanted students to achieve, rather than just saying “well how can ICT be integrated within a subject?”

The third theme was one around the intention to shape students’ behaviour – providing activities to guide them through learning. There was a sense that this was expected and welcomed by students.

Finally, at the point of implementation, significant support was required, which often wasn’t forthcoming, and because of this, and other factors, intentions had to be compromised.

The authors use these themes to make some points about the process of advocating and supporting those integrating technology. I like their point about “formative development” – rolling out things over multiple iterations and thus lowering the stakes. Certainly my own experience (in hindsight!) reflects the benefit of this.

One other aspect of advocacy that isn’t mentioned but I think could be is to provide a framework upon which you hang your approaches. Giving students quizzes “coz it helps them revise” probably isn’t a sufficient framework, and nor is “lecture capture coz we can”. I try to use the framework of cognitive load theory as a basis for a lot of what I do, so that I have some justification for when things are supported or not, depending on where I expect students to be at in their progression. It’s a tricky balance, but I think such a framework at least prompts consideration of an overall approach rather than a piecemeal one.

There’s a lovely graphic from All Aboard showing lots of technologies, and as an awareness tool it is great. But there is probably a huge amount to be done in terms of digital literacy, regarding both the how, but also the why, of integrating technology into our teaching approaches.

map2
Click link to go to All Aboard webpage

 

Using the Columbo approach on Discussion Boards

As pat of our ongoing development of an electronic laboratory manual at Edinburgh, I decided this year to incorporate discussion boards to support students doing physical chemistry labs. It’s always a shock, and a bit upsetting, to hear students say that they spent very long periods of time on lab reports. The idea behind the discussion board was to support them as they were doing these reports, so that they could use the time they were working on them in a more focussed way.

The core aim is to avoid the horror stories of students spending 18 hours on a report, because if they are spending that time on it, much of it must be figuring out what the hell it is they are meant to be doing. Ultimately, a lab report is a presentation of some data, usually graphically, and some discussion of the calculations based on that data. That shouldn’t take that long.

Setting Up

The system set-up was easy. I had asked around and heard some good suggestions for external sites that did this well (can’t remember it now but one was suggested by colleagues in physics where questions could be up-voted). But I didn’t anticipate so many questions that I would have to answer only the most pressing, and didn’t want “another login”, and so just opted for Blackboard’s native discussion board. Each experiment got its own forum, along with a forum for general organisation issues.

Use

A postgrad demonstrator advised me to allow the posts to be made anonymously, and that seemed sensible. Nothing was being graded, and I didn’t want any reticence about asking questions. Even anonymously, some students apologised for asking what they deemed “silly” questions, but as in classroom scenarios, these were often the most insightful. Students were told to use the forum for questions, and initially, any questions by email were politely redirected to the board. In cases close to submission deadlines, I copied the essential part of the question, and pasted it to the board with a response. But once reports began to be due, the boards became actively used. I made sure in the first weekend to check in too, as this was likely going to be the time that students would be working on their reports.

The boards were extensively used. About 60 of our third years do phys chem labs at a time, and they viewed the boards over 5500 times in a 6 week period. Half of these views were on a new kinetics experiment, which tells me as organiser that I need to review that. For second years, they have just begun labs, and already in a two week period, 140 2nd years viewed the board 2500 times. The number of posts of course is nowhere near this, suggesting that most views are “lurkers”, and probably most queries are common. Since students can post anonymously, I have no data on what proportion of students were viewing the boards. Perhaps it is one person going in lots, but given the widespread viewership across all experiments, my guess is it isn’t. The boards were also accessible to demonstrators (who correct all the reports), but I’ve no idea if they looked at them.

Reception

The reception from students has been glowing, so much so that it is the surprise “win” of the semester. (Hey, look over here at all these videos I made… No? Okay then!) Students have reported at school council, staff student liaison committees, anecdotally to me and other staff that they really like and appreciate the boards. Which of course prompts introspection.

Why do they like them? One could say that of course students will like them, I’m telling them the answer. And indeed, in many cases, I am. The boards were set up to provide clear guidance on what is needed and expected in lab reports. So if I am asked questions, of course I provide clear guidance. That mightn’t always be the answer, but it will certainly be a very clear direction to students on what they should do. But in working through questions and answers, I stumbled across an additional aspect.

One more thing

Me, when asked an electrochemistry question
Me, when asked an electrochemistry question

Everyone’s favourite detective was famous for saying: “oh: just one more thing“. I’ve found in the lab that students are very keen and eager to know what purpose their experiment has in the bigger context, where it might be used in research, something of interest in it beyond the satisfaction of proving, once again, some fundamental physical constant. And in honesty, it is a failing on our part and in the “traditional” approach that we don’t use this opportunity to inspire. So sometimes in responding to questions, I would add in additional components to think about – one more thing – something to further challenge student thought, or to demonstrate where the associated theory or technique in some experiment we were doing is used in research elsewhere. My high point was when I came across an experiment that used exactly our technique and experiment, published in RSC Advances this year. This then sparked the idea of how we can develop these labs more, the subject of another post.

Again I have no idea if students liked this or followed up these leads. But it did ease my guilt a little that I might not be just offering a silver spoon. It’s a hard balance to strike, but I am certainly going to continue with discussion boards for labs while I work it out.