Using the Columbo approach on Discussion Boards

As pat of our ongoing development of an electronic laboratory manual at Edinburgh, I decided this year to incorporate discussion boards to support students doing physical chemistry labs. It’s always a shock, and a bit upsetting, to hear students say that they spent very long periods of time on lab reports. The idea behind the discussion board was to support them as they were doing these reports, so that they could use the time they were working on them in a more focussed way.

The core aim is to avoid the horror stories of students spending 18 hours on a report, because if they are spending that time on it, much of it must be figuring out what the hell it is they are meant to be doing. Ultimately, a lab report is a presentation of some data, usually graphically, and some discussion of the calculations based on that data. That shouldn’t take that long.

Setting Up

The system set-up was easy. I had asked around and heard some good suggestions for external sites that did this well (can’t remember it now but one was suggested by colleagues in physics where questions could be up-voted). But I didn’t anticipate so many questions that I would have to answer only the most pressing, and didn’t want “another login”, and so just opted for Blackboard’s native discussion board. Each experiment got its own forum, along with a forum for general organisation issues.

Use

A postgrad demonstrator advised me to allow the posts to be made anonymously, and that seemed sensible. Nothing was being graded, and I didn’t want any reticence about asking questions. Even anonymously, some students apologised for asking what they deemed “silly” questions, but as in classroom scenarios, these were often the most insightful. Students were told to use the forum for questions, and initially, any questions by email were politely redirected to the board. In cases close to submission deadlines, I copied the essential part of the question, and pasted it to the board with a response. But once reports began to be due, the boards became actively used. I made sure in the first weekend to check in too, as this was likely going to be the time that students would be working on their reports.

The boards were extensively used. About 60 of our third years do phys chem labs at a time, and they viewed the boards over 5500 times in a 6 week period. Half of these views were on a new kinetics experiment, which tells me as organiser that I need to review that. For second years, they have just begun labs, and already in a two week period, 140 2nd years viewed the board 2500 times. The number of posts of course is nowhere near this, suggesting that most views are “lurkers”, and probably most queries are common. Since students can post anonymously, I have no data on what proportion of students were viewing the boards. Perhaps it is one person going in lots, but given the widespread viewership across all experiments, my guess is it isn’t. The boards were also accessible to demonstrators (who correct all the reports), but I’ve no idea if they looked at them.

Reception

The reception from students has been glowing, so much so that it is the surprise “win” of the semester. (Hey, look over here at all these videos I made… No? Okay then!) Students have reported at school council, staff student liaison committees, anecdotally to me and other staff that they really like and appreciate the boards. Which of course prompts introspection.

Why do they like them? One could say that of course students will like them, I’m telling them the answer. And indeed, in many cases, I am. The boards were set up to provide clear guidance on what is needed and expected in lab reports. So if I am asked questions, of course I provide clear guidance. That mightn’t always be the answer, but it will certainly be a very clear direction to students on what they should do. But in working through questions and answers, I stumbled across an additional aspect.

One more thing

Me, when asked an electrochemistry question
Me, when asked an electrochemistry question

Everyone’s favourite detective was famous for saying: “oh: just one more thing“. I’ve found in the lab that students are very keen and eager to know what purpose their experiment has in the bigger context, where it might be used in research, something of interest in it beyond the satisfaction of proving, once again, some fundamental physical constant. And in honesty, it is a failing on our part and in the “traditional” approach that we don’t use this opportunity to inspire. So sometimes in responding to questions, I would add in additional components to think about – one more thing – something to further challenge student thought, or to demonstrate where the associated theory or technique in some experiment we were doing is used in research elsewhere. My high point was when I came across an experiment that used exactly our technique and experiment, published in RSC Advances this year. This then sparked the idea of how we can develop these labs more, the subject of another post.

Again I have no idea if students liked this or followed up these leads. But it did ease my guilt a little that I might not be just offering a silver spoon. It’s a hard balance to strike, but I am certainly going to continue with discussion boards for labs while I work it out.

#ViCEPHEC16 – curly arrows and labs

The annual Variety in Chemistry Education/Physics Higher Education conference was on this week in Southampton. Some notes and thoughts are below.

Curly arrows

Physicists learned a lot about curly arrows at this conference. Nick Greeves‘ opening keynote spoke about the development of ChemTube3D – a stunning achievement – over 1000 HTML pages, mostly developed by UG students. News for those who know the site are that 3D curly arrow mechanisms are now part of the reaction mechanism visualisations, really beautiful visualisation of changing orbitals as a reaction proceeds for 30+ reactions, lovely visualisations of MOFs, direct links to/from various textbooks, and an app at the prototype stage. Nick explained that this has all been developed with small amounts of money from various agencies, including the HEA Physical Sciences Centre.

Mike Casey from UCD spoke about a resource at a much earlier stage of development; an interactive mechanism tutor. Students can choose a reaction type and then answer the question by drawing the mechanism – based on their answer they receive feedback. Version 2 is on the way with improved feedback, but I wondered if this feedback might include a link to the appropriate place in Chemtube3D, so that students could watch the associated visualisation as part of the feedback.

In the same session Robert Campbell spoke about his research on how A-level students answer organic chemistry questions. My understanding is that students tend to use rules of mechanisms (e.g. primary alkyl halides means it’s always SN2) without understanding the reason why; hence promoting rote learning. In a nice project situated in the context of cognitive load theory, Rob used Livescribe technology to investigate students reasoning. Looking forward to seeing this research in print.

Rob’s future work alluded to considering the video worked answers described by Stephen Barnes, also for A-level students. These demonstrated a simple but clever approach; using questions resembling A-level standard, asking students to complete them, providing video worked examples so students could self-assess, and then getting them to reflect on how they can improve. David Read mentioned that this model aligned with the work of Sadler, worth a read.

Laboratory work

Selfishly, I was really happy to see lots of talks about labs on the programme. Ian Bearden was the physics keynote, and he spoke about opening the laboratory course – meaning the removal of prescriptive and allowing students to develop their own procedures. Moving away from pure recipe is of course music to this audience’s ears and the talk was very well received. But you can’t please everyone – I would have loved to hear much more about what was done and the data involved, rather than the opening half of the talk about the rationale for doing so. A short discussion prompted this tweet from Felix Janeway, something we can agree on! But I will definitely be exploring this work more. Ian also mentioned that this approach is also part of physics modules taught to trainee teachers, which sounded a very good idea.

Jennifer Evans spoke about the prevalence of pre-labs in UK institutions following on from the Carnduff and Reid study in 2003. Surprisingly many don’t have any form of pre-lab work. It will be interesting to get a sense of what pre-lab work involves – is it theory or practice? Theory and practice were mentioned in a study from Oxford presented by Ruiqi Yu, an undergraduate student. This showed mixed messages on the purpose of practical work, surely something the academy need to agree on once and for all. There was also quite a nice poster from Oxford involving a simulation designed to teach experimental design, accessible at this link. This was also built by an undergraduate student. Cate Cropper from Liverpool gave a really useful talk on tablets in labs – exploring the nitty gritty of how they might work. Finally on labs, Jenny Slaughter gave an overview of the Bristol ChemLabs, which is neatly summarised in this EiC article, although the link to the HEA document has broken.

Other bites

  • Gwen Lawrie (via Skype) and Glenn Hurst spoke about professional development; Gwen mentioned this site she has developed with Madeline Schultz and others to inform lecturers about PCK. Glenn spoke about a lovely project on training PhD students for laboratory teaching – details here.  This reminds me of Barry Ryan‘s work at DIT.
  • Kristy Turner gave an overview of the School Teacher Fellow model at Manchester, allowing her to work both at school and university with obvious benefits for both. Kristy looked forward to an army of Kristy’s, which would indeed be formidable, albeit quite scary. Even without that, the conference undoubtedly benefits from the presence of school teachers, as Rob’s talk, mentioned above, demonstrates.
  • Rachel Koramoah gave a really great workshop on qualitative data analysis. Proving the interest in chemistry education research, this workshop filled up quickly. The post-it note method was demonstrated, which was interesting and will certainly explore more, but I hope to tease out a bit more detail on the data reduction step. This is the benefit of this model – the participants reduce the data for you – but I worry that this might in turn lead to loss of valuable data.
  • Matthew Mears gave a great byte on the value of explicit signposting to textbooks using the R-D-L approach: Read (assign a reading); Do (Assign questions to try); Learn (assign questions to confirm understanding). Matt said setting it up takes about 30 minutes and he has seen marked improvements in student performance in comparison to other sections of the course.
  • David Nutt won the best poster prize. His poster showed the results of eye-tracking experiments to demonstrate the value or not of an in-screen presenter. Very interesting results which I look forward to seeing in print.

The conference organisation was brilliant and thanks to Paul Duckmanton and Charles (Minion) Harrison for leading the organisation. Lots of happy but tired punters left on Friday afternoon.

I couldn’t attend everything, and other perspectives on the meeting with links etc can be found at links below. From Twitter, Barry Ryan’s presenation on NearPod seemed popular, along with the continuing amazingness of my colleagues in the Edinburgh Physics Education Research Group. One of their talks, by Anna Wood, is available online.

Getting ready to badge and looking for interested partners

Over the summer we have been working on a lab skills badging project. Lots of detail is on the project home site, but briefly this is what it’s about:

  • Experimental skills are a crucial component of student laboratory learning, but we rarely assess them, or even check them, formally. For schools, there is a requirement to show that students are doing practical work.
  • By implementing a system whereby students review particular lab techniques in advance of labs, demonstrate them to a peer while being videod, reviews the technique with a peer using a checklist, and uploads the video for assessment, we intend that students will be able to learn and perform the technique to a high standard.
  • The video can form part of students electronic portfolio that they may wish to share in future (See this article for more on that).
  • The process is suitable for digital badging – awarding of an electronic badge acknowledging competency in a particular skill (think scout badges for… tying knots…).

Marcy Towns has a nice paper on this for pipetting and we are going to trial it for this and some other lab techniques.

Looking for interested parties to trial it out

I am looking for school teachers who would like to try this method out. It can be used to document any lab technique or procedure you like. You don’t necessarily need an exemplar video, but a core requirement is that you want to document students laboratory work formally, and acknowledge achievement in this work by a digital badge. We will provide the means to offer the badge, and exemplar videos if you need them, assuming they are within our stock. Interested teachers will be responsible for local implementation and assessment of quality (i.e. making the call on whether a badge is issued).

Yes I need help with badge design
Yes I need help with badge design

This will be part of a larger project and there will be some research on the value and impact of the digital badges, drawing from implementation case studies. This will be discussed with individuals, depending on their own local circumstances.

So if you are interested, let’s badge! You can contact me at: michael.seery@ed.ac.uk to follow up.

Planning a new book on laboratory education

Contracts have been signed so I am happy to say that I am writing a book on chemistry laboratory education as part of the RSC’s new Advances in Chemistry Education series due for publication mid 2017.

I’ve long had an interest in lab education, since stumbling across David McGarvey’s “Experimenting with Undergraduate Practicals” in University Chemistry Education (now CERP). Soon after, I met Stuart Bennett, now retired, from Open University at a European summer school. Stuart spoke about lab education and its potential affordances in the curriculum. He was an enormous influence on my thinking in chemistry education, and in practical work in particular. We’d later co-author a chapter on lab education for a book for new lecturers in chemistry published by the RSC (itself a good example on the benefits of European collaboration). My first piece of published education research was based on laboratory work; a report in CERP on the implementation of mini-projects in chemistry curriculum, completed with good friends and colleagues Claire Mc Donnell and Christine O’Connor. So I’ve been thinking about laboratory work for a long time.

Why a book?

A question I will likely be asking with increasing despair over the coming months is: why am I writing a book? To reaffirm to myself as much as anything else, and to remind me if I get lost on the way, the reasons are pretty straightforward.

My career decisions and personal interests over the last few years have meant that I have moved my focus entirely to chemistry education. Initially this involved sneaking in some reading between the covers of J. Mat. Chem. when I was meant to be catching up on metal oxide photocatalysis. But as time went on and thanks to the support of others involved in chemistry education, this interest became stronger. I eventually decided to make a break with chemistry and move into chemistry education research. (One of the nicest things for me personally about joining Edinburgh was that this interest was ultimately validated.)

So while my knowledge of latest chemistry research is limited mainly to Chemistry World reports, one thing I do know well is the chemistry education research literature. And there is a lot of literature on laboratory education. But as I read it and try to keep on top of it, it is apparent that much of the literature on laboratory education falls into themes, and by a bit of rethinking of these themes and by taking a curriculum design approach, some guiding principles for laboratory education can be drawn up. And that a compilation of such principles, within the context of offering a roadmap or plan for laboratory education might be useful to others.

And this is what I hope to offer. The book will be purposefully targeted at anyone responsible for taking a traditional university level chemistry laboratory course and looking to change it. In reality, such change is an enormous task, and being pragmatic, needs to happen in phases. It’s tempting then to tweak bits and change bits based on some innovation presented at a conference or seen in a paper. But there needs to be an overall design for the entire student experience, so that incremental changes sum up to an overall consistent whole piece. Furthermore, by offering a roadmap or overall design, I hope to empower members of staff who may be responsible for such change by giving the evidence they may need to rationalise changes to colleagues. Everyone has an opinion on laboratory education! The aim is to provide evidence-based design approaches.

My bookshelves are groaning with excellent books on laboratory education. I first came across Teaching in Laboratories by Boud Dunn and Hegarty-Hazel back in the days when I stumbled across McGarvey’s article. I still refer to it, as even though it was published in 1986, it still carries a lot of useful material. Woolnough and Allsop’s Practical Work in Science is also excellent; crystal clear on the role and value of laboratory education and its distinction from lecture based curriculum. Hegarty-Hazel also edited The Student Laboratory and the Science Curriculum. Roger Anderson’s book The Experience of Science was published before I was born.

I have bought these now out of print books and several more second hand for less than the cost of a cup of coffee. I have learned lots from them, but am mindful that (justifiably) well-known and comprehensive as they are, they are now out of print and our university laboratories have not seen much change in the forty years since Anderson.

I am very conscious of this as I structure my own book. I can speculate that books about science laboratories at both secondary and tertiary level may be too broad. So the book is focussing exclusively on chemistry and higher education.

Secondly, the book is very clearly directed at those implementing a new approach, those involved in change. Ultimately it is their drive and energy and input that decides the direction of changes that will occur.  I hope that by speaking directly to them with a clear rationale and approach based on an up-to-date literature, that it may ease the workload somewhat for those looking to rethink laboratory education in their curricula. Now I just need to actually write it.

Alex Johnstone’s 10 Educational Commandments

My thanks to Prof Tina Overton for alerting me to the fact that these exist. I subsequently happened across them in this article detailing an interview with Prof Johnstone (1), and thought they would be useful to share.

Ten Educational Commandments 

1. What is learned is controlled by what you already know and understand.

2. How you learn is controlled by how you learned in the past (related to learning style but also to your interpretation of the “rules”).

3. If learning is to be meaningful, it has to link on to existing knowledge and skills, enriching both (2).

4. The amount of material to be processed in unit time is limited (3).

5. Feedback and reassurance are necessary for comfortable learning, and assessment should be humane.

6. Cognisance should be taken of learning styles and motivation.

7. Students should consolidate their learning by asking themselves about what goes on in their own heads— metacognition.

8. There should be room for problem solving in its fullest sense (4).

9. There should be room to create, defend, try out, hypothesise.

10. There should be opportunity given to teach (you don’t really learn until you teach) (5).

Johnstone told his interviewer that he didn’t claim any originality for the statements, which his students called the 10 educational commandments. Rather he merely brought together well known ideas from the literature. But, and importantly for this fan, Johnstone said that they have been built into his own research and practice, using them as “stars to steer by”.

References

  1. Cardellini, L, J. Chem. Educ., 2000, 77, 12, 1571.
  2. Johnstone, A. H. Chemical Education Research and Practice in Europe (CERAPIE) 2000, 1, 9–15; online at http://www.uoi.gr/cerp/2000_January/contents.html.
  3. Johnstone, A. H. J. Chem. Educ. 1993, 70, 701–705
  4. Johnstone, A. H. In Creative Problem Solving in Chemistry; Wood, C. A., Ed.; Royal Society of Chemistry: London, 1993.
  5. Sirhan, G.; Gray, C.; Johnstone, A. H.; Reid, N. Univ. Chem. Educ. 1999, 3, 43–46.

ChemEd Journal Publications from UK since 2015

I’ve compiled this list for another purpose and thought it might be useful to share here. 

The following are publications I can find* from UK corresponding authors on chemistry education research, practice, and laboratory work relevant to HE since beginning of 2015.  There are lots of interesting finds and useful articles. Most are laboratory experiments and activities, Some refer to teaching practice or underlying principles.

I don’t imagine this is a fully comprehensive list, so do let me know what’s missing. It’s in approximate chronological order from beginning of 2015.

  1. Surrey (Lygo-Baker): Teaching polymer chemistry
  2. Reading (Strohfeldt): PBL medicinal chemistry practical
  3. Astra Zeneca and Huddersfield (Hill and Sweeney): A flow chart for reaction work up
  4. Bath (Chew): Lab experiment: coffee grounds to biodiesel
  5. Nottingham (Galloway): PeerWise for revision
  6. Hertfordshire (Fergus): Context examples of recreational drugs for spectroscopy and introductory organic chemistry 
  7. Overton (was Hull): Dynamic problem based learning
  8. Durham (Hurst, now at York): Lab Experiment: Rheology of PVA gels
  9. Reading (Cranwell): Lab experiment: Songoshira reaction
  10. Edinburgh (Seery): Flipped chemistry trial
  11. Oaklands (Smith): Synthesis of fullerenes from graphite
  12. Manchester (O’Malley): Virtual labs for physical chemistry MOOC  
  13. Edinburgh (Seery): Review of flipped lectures in HE chemistry
  14. Manchester (Wong): Lab experiment: Paterno-Buchi and kinetics
  15. Southampton (Coles): Electronic lab notebooks in upper level undergraduate lab
  16. UCL (Tomaszewski): Information literacy, searching
  17. St Andrews & Glasgow (Smellie): Lab experiment: Solvent extraction of copper
  18. Imperial (Rzepa): Lab experiment: Assymetric epoxidation in the lab and molecular modelling; electronic lab notebooks
  19. Reading (Cranwell): Lab experiment: Wolff Kishner reaction
  20. Imperial (Rzepa): Using crystal structure databases
  21. Leeds (Mistry): Inquiry based organic lab in first year – students design work up
  22. Manchester (Turner): Molecular modelling activity
  23. Imperial (Haslam & Brechtelsbauer): Lab experiment: vapour pressure with an isosteniscope
  24. Imperial (Parkes): Making a battery from household products
  25. Durham (Bruce and Robson): A corpus for writing chemistry
  26. Who will it be…?!

*For those interested, the Web of Science search details are reproduced below. Results were filtered to remove non-UK papers, conference proceedings and editorials.

ADDRESS:((united kingdom OR UK OR Scotland OR Wales OR England OR (Northern Ireland))) AND TOPIC: (chemistry)AND YEAR PUBLISHED: (2016 or 2015)

Refined by: WEB OF SCIENCE CATEGORIES: ( EDUCATION EDUCATIONAL RESEARCH OR EDUCATION SCIENTIFIC DISCIPLINES )
Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC.

 

Practical work: theory or practice?

Literature on laboratory education over the last four decades (and more, I’m sure) has a lot to say on the role of practical work in undergraduate curricula. Indeed Baird Lloyd (1992) surveys opinions on the role of practical work in North American General Chemistry syllabi over the course of the 20th century and opens with this delicious quote, apparently offered by a student in 1928 in a $10 competition:

Chemistry laboratory is so intimately connected with the science of chemistry, that, without experimentation, the true spirit of the science cannot possibly be acquired. 

I love this quote because it captures so nicely the sense that laboratory work is at the heart of chemistry teaching – its implicit role in the teaching of chemistry is unquestionable. And although it has been questioned a lot, repeatedly, over the following decades; not many today would advocate a chemistry syllabus that did not contain laboratory work.

I feel another aspect of our consideration of chemistry labs is often unchallenged, and needs to be. That is the notion that chemistry laboratories are in some way proving ground for what students come across in lectures. That they provide an opportunity for students to visualise and see for themselves what the teacher or lecturer was talking about. Or more laudably, to even “discover” for themselves by following a controlled experiment a particular relationship. Didn’t believe it in class that an acid and an alcohol make an ester? Well now you are in labs, you can prove it. Can’t imagine that vapour pressure increases with temperature? Then come on in – we have just the practical for you. Faraday said that he was never able to make a fact his own without seeing it. But then again, he was a great demonstrator.

A problem with this on an operational level, especially at university, and especially in the physical chemistry laboratory, is that is near impossible to schedule practicals so that they follow on from the introduction of theory in class. This leads to the annual complaint from students that they can’t do the practical because they haven’t done the theory. Your students are saying this, if you haven’t heard them, you need to tune your surveys.

It’s an entirely understandable sentiment from students because we situate practicals as a subsidiary of lectures. But this is a false relationship for a variety of reasons. The first is that if you accept a model whereby you teach students chemistry content in lectures, why is there a need to supplement this teaching with a re-teaching of a sub-set of topics, arbitrarily chosen based on the whim of a lab course organiser and the size of a department’s budget? Secondly, although we aim to re-teach, or hit home some major principle again in lab work, we don’t really assess that. We might grade students’ lab report and give feedback, but it is not relevant to them as they won’t need to know it again in that context. The lab report is done. And finally, the model completely undermines the true role of practical work and value it can offer the curriculum.

A different model

When we design lecture courses, we don’t really give much thought to the labs that will go with them. Lecture course content has evolved rapidly to keep up to date with new chemistry; lab development is much slower. So why not the other way around? Why not design lab courses independent of lectures? Lecture courses are one area of the curriculum to learn – typically the content of the curriculum; laboratory courses are another. And what might the role here be?

Woolnough and Allsop (1985), who make a clear and convincing argument for cutting the “Gordian knot” between theory and practice, instead advocate a syllabus that has three aims:

  1. developing practical skills and techniques.
  2. being a problem-solving chemist.
  3. getting a “feel for phenomena”.

The detail of how this can be done is the subject of their book, but involves a syllabus that has “exercises, investigations, and experiences”. To me these amount to the “process” of chemistry. On a general level, I think this approach is worth consideration as it has several impacts on teaching and learning in practice.

Impacts on teaching and learning

Cutting the link between theory and practice means that there is no longer a need to examine students’ understanding of chemistry concepts by proxy. Long introductions, much hated by students, which aim to get the student to understand the theory behind the topic at hand by rephrasing what is given to them in a lab manual, are obsolete. A properly designed syllabus removes the need for students to have had lectures in a particular topic before a lab course. Pre-lab questions can move away from being about random bits of theory and focus on the relationships in the experiment. There is no need for pointless post-lab questions that try to squeeze in a bit more theory.

Instead, students will need to approach the lab with some kind of model for what is happening. This does not need to be the actual equations they learn in lectures. Some thought means they may be able to draw on prior knowledge to inform that model. Of course, the practical will likely involve using some aspect of what they cover or will cover in lectures, but at the stage of doing the practical, it is the fundamental relationship they are considering and exploring. Approaching the lab with a model of a relationship (clearly I am in phys chem labs here!) and exploring that relationship is better reflecting the nature of science, and focussing students attention on the study in question. Group discussions and sharing data are more meaningful. Perhaps labs could even inform future lectures rather than rely on past ones! A final advantage is the reassertion of practical skills and techniques as a valuable aspect of laboratory work.

A key point here is that the laboratory content is appropriate for the level of the curriculum, just as it is when we design lectures. This approach is not advocating random discovery – quite the opposite. But free of the bond with associated lectures, there is scope to develop a much more coherent, independent, and more genuinely complementary laboratory course.

References

Baird W. Lloyd, The 20th Century General Chemistry Laboratory: its various faces, J. Chem. Ed., 1992, 69(11), 866-869.

Brian Woolnaugh and Terry Allsop (1985) Practical Work in Science, Cambridge University Press.

1928 quote

Developing practical skills in the chemistry laboratory

How do we prepare students for practical skills they conduct in the laboratory?

Practical skills involve psychomotor development, as they typically involve handling chemicals, glassware, and instrumentation. But how do we prepare students for this work, and do we give them enough time to develop these skills?

Farmer and Frazer analysed 126 school experiments (from the old O-level Nuffield syllabus) with a view to categorising practical skills and came up with some interesting results.[1] Acknowledging that some psychomotor tasks include a cognitive component (they give the example of manipulating the air-hole collar of a Bunsen burner while judging the nature of the flame for a particular task at hand) they identified 65 psychomotor tasks and 108 cognitive tasks from the experiments studied. Some of these psychomotor tasks are defined as having a key role, in that the success of the experiment is dependent on the successful completion of that task, reducing the number of psychomotor skills to 44. Many of these key tasks were required in only a few experiments, so the set was again reduced to number of frequent key tasks – those occurring in more than 10 experiments. The 14 frequent key tasks subsequently identified are described in their table below.

Data from Education in Chemistry (Ref 1)
Data from Education in Chemistry (Ref 1)

Thus of the 65 psychomotor skills listed, only 14 are defined as frequent key tasks, limiting the opportunities for pupils to develop the skills associated with completing them. Indeed this paper goes on to demonstrate that in an assessment of 100 pupils, there was very poor demonstration of ability in correctly completing the practical tasks, which they attribute to the design of the syllabus and the limited opportunity to do practical work.

This article prompts me to think again: how do we prepare students for the laboratory skills aspect of practical work? I think the most common approach is to demonstrate immediately in advance of the student completing the practical, explaining the technique or the apparatus and its operation. However, demonstration puts students in the mode of observer; they are watching someone else complete an activity, rather than conceptualising their own completion. It also relies on the quality of the demonstrator, and is subject to local hazards, such as time available, ability to see and hear the demonstration, and so on. Therefore, there may be benefit in shifting this demonstration to pre-lab, allowing students time to become accustomed to a technique and its nuances.

Such pre-labs need to be carefully designed, and actively distinguished from any pre-lab information focussing on theory, which has a separate purpose. At Edinburgh, two strategies are planned.

The first is on the development of core introductory laboratory skills: titrations involving pipetting and buretting; preparing standard solutions including using a balance; and setting up Quickfit glassware to complete a distillation. Pre-lab information is provided to students in the form of videos demonstrating each technique, with key steps in each procedure highlighted in the video. Students will be required to demonstrate each of the three procedures to their peers in the laboratory, while their peer uses the checklist to ensure that all aspects of the task were completed appropriately. The purpose here is to incorporate preparation, demonstration, and peer-review into the learning of core lab skills, as well as to set in mind early on in students’ university careers the correct approach and the appropriate glassware to use for basic laboratory techniques. The approach includes students’ videoing their peers as part of the review process using mobile phones; and the video recording will subsequently be used as evidence for issuing students with a digital badge for that technique (more on that at the project homepage).

The second approach is to develop the laboratory manual beyond its traditional textbook format to be an electronic laboratory manual, with pre-lab demonstrations included. More on that project to come soon.

In designing pre-lab activities for skills development, the aim is to move beyond “just demonstrating” and to get students thinking through the approaches they will take. The reason for this is guided by work done by Beasley in the late 1970s. Beasley drew from the literature of physical education to consider the development of psychomotor skills in chemistry. He studied the concept of mental practice as a technique to help students prepare for the laboratory.[2] Mental practice is based on the notion that physical activity requires mental thought, and thus mentally or introspectively rehearsing an activity prompts neural and muscular responses.[3]  Students were assigned to groups where they conducted no preparation, physical preparation, mental preparation, and both physical and mental preparation. They were tested before and after completing a lab on volumetric analysis. Beasley reported that students who students entering college from school were not proficient in completing volumetric analysis based on accuracy of their results. Furthermore, there was no significant difference in post-test scores of treatment students (which were all better than students who did no preparation), suggesting that mental preparation was as effective as physical preparation.

Those interested in reading more on this topic may enjoy two reviews by Stephen DeMeo; one in J. Chem. Ed.[4] and an elegant piece “Gazing at the hand” in Curriculum Inquiry.[5]

References

[1] A. Farmer and M. J. Frazer, Practical Skills in School Chemistry, Education in Chemistry, 1985, 22, 138.

[2] W. Beasley, The Effect of Physical and Mental Practice of Psychomotor Skills on Chemistry Student Laboratory Performance, Journal of Research in Science Teaching, 1979, 16(5), 473.

[3] J. B. Oxendine, Physical education. In Singer, R. B. (Ed.), The psychomotor domain: Movement behavior. Philadelphia: Lea and Feberger, 1972.

[4] S. De Meo, Teaching Chemical Technique: A review of the literature, Journal of Chemical Education, 2001 78(3), 373.

[5] S. De Meo, Gazing at the Hand: A Foucaultian View of the Teaching of Manipulative Skills to Introductory Chemistry Students in the United States and the Potential for Transforming Laboratory Instruction, Curriculum Inquiry, 2005, 35, 3.

Reflections on #micer16

Several years ago at the Variety in Chemistry Education conference, there was a rather sombre after-dinner conversation on whether the meeting would continue on in subsequent years. Attendance numbers were low and the age profile was favouring the upper half of the bell-curve.

Last year at Variety I registered before the deadline and got, what I think was the last space, and worried about whether my abstract would be considered. The meeting was packed full of energetic participants interested in teaching from all over UK and Ireland, at various stages of their careers. A swell in numbers is of course expected from the merging with the Physics Higher Education Conference, but the combination of the two is definitely (from this chemist’s perspective) greater than the sum of its parts.

Participants at #micer16
Participants at #micer16

What happened in the mean time would be worthy of a PhD study. How did the fragile strings that were just holding people together in this disparate, struggling community, not snap, but instead strengthen to bring in many newcomers? A complex web of new connections has grown.  While I watched it happen I am not sure how it happened. I suspect it is a confluence of many factors: the efforts of the RSC at a time when chemistry was at a low-point. The determination of the regular attendees to keep supporting it, knowing its inherent value. The ongoing support of people like Stuart Bennett, Dave McGarvey, Stephen Breuer, Bill Byers, and others. And of course the endless energy of Tina Overton and the crew at the Physical Sciences Centre at Hull.

Whatever the process, we are very lucky to have a vibrant community of people willing to push and challenge and innovate in our teaching of chemistry. And that community is willing and is expected to play a vital role in the development of teaching approaches. This requires design and evaluation of these approaches; a consideration of how they work in our educational context. And this requires the knowledge of how to design these research studies and complete these evaluations. Readers will note that Variety now particularly welcome evidence-based approaches.

Most of us in this community are chemists, and the language of education research can be new, and difficult to navigate. Thus a meeting such as MICER held last week aimed to introduce and/or develop approaches in education research. The speakers were excellent, but having selected them I knew they would be! Participants left, from what I could see and saw on social media, energised and enthused about the summer ahead and possible projects.

But we will all return to our individual departments, with the rest of the job to do, and soon enthusiasm gives way to pragmatism, as other things get in the way. It can be difficult to continue to develop expertise and competence in chemistry education research without a focus. The community needs to continue to support itself, and seek support from elsewhere.

How might this happen?

Support from within the community can happen by contacting someone you met at a conference and asking them to be a “critical friend”. Claire Mc Donnell introduced me to this term  and indeed was my critical friend. This is someone whom you trust to talk about your work with, share ideas and approaches, read drafts of work. It is a mutual relationship, and I have found it extremely beneficial, both from the perspective of having someone sensible to talk to, but also from a metacognitive perspective. Talking it out makes me think about it more.

The community can organise informal and formal journal clubs. Is there a particular paper you liked – how did the authors complete a study and what did they draw from it? Why not discuss it with someone, or better still in the open?

Over the next while I am hoping to crystallise these ideas and continue the conversations on how we do chemistry education research. I very much hope you can join me and be an active participant; indeed a proactive participant. So that there is an independent platform, I have set up the website http://micerportal.wordpress.com/ and welcome anyone interested in being involved to get in touch about how we might plan activities or even a series of activities. I hope to see you there.

Significant omission from my top 10 #chemed post!

0. Text messages to explore students’ study habits (Ye, Oueini, Dickerson, and Lewis, CERP)

I was excited to see Scott Lewis speak at the Conference That Shall Not Be Named during the summer as I really love his work. This paper outlines an interesting way to find out about student study habits, using text-message prompts. Students received periodic text messages asking them if they have studied in the past 48 hours. The method is ingenious. Results are discussed in terms of cluster analysis (didn’t study as much, used textbook/practiced problems, and online homework/reviewed notes). There is lots of good stuff here for those interested in students’ study and supporting independent study time. Lewis often publishes with Jennifer Lewis, and their papers are master-classes in quantitative data analysis. (Note this candidate for my top ten was so obvious I left it out in the original draft, so now it is a top 11…)

I’ve now included this in the original post.

Scott Lewis CERP

My ten favourite #chemed articles of 2015

This post is a sure-fire way to lose friends… but I’m going to pick 10 papers that were published this year that I found interesting and/or useful. This is not to say they are ten of the best; everyone will have their own 10 “best” based on their own contexts.

Caveats done, here are 10 papers on chemistry education research that stood out for me this year:

0. Text messages to explore students’ study habits (Ye, Oueini, Dickerson, and Lewis, CERP)

I was excited to see Scott Lewis speak at the Conference That Shall Not Be Named during the summer as I really love his work. This paper outlines an interesting way to find out about student study habits, using text-message prompts. Students received periodic text messages asking them if they have studied in the past 48 hours. The method is ingenious. Results are discussed in terms of cluster analysis (didn’t study as much, used textbook/practiced problems, and online homework/reviewed notes). There is lots of good stuff here for those interested in students’ study and supporting independent study time. Lewis often publishes with Jennifer Lewis, and together their papers are master-classes in quantitative data analysis. (Note this candidate for my top ten was so obvious I left it out in the original draft, so now it is a top 11…)

1. What do students learn in the laboratory (Galloway and Lowery-Bretz, CERP)?

This paper reports on an investigation using video cameras on the student to record their work in a chemistry lab. Students were interviewed soon after the lab. While we can see what students physically do while they are in the lab (psychomotor learning), it is harder to measure cognitive and affective experiences. This study set about trying to measure these, in the context of what the student considered to be meaningful learning. The paper is important for understanding learning that is going on in the laboratory (or not, in the case of recipe labs), but I liked it most for the use of video in collection of data.

2. Johnstone’s triangle in physical chemistry (Becker, Stanford, Towns, and Cole, CERP).

We are familiar with the importance of Johnstone’s triangle, but a lot of research often points to introductory chemistry, or the US “Gen Chem”. In this paper, consideration is given to understanding whether and how students relate macro, micro, and symbolic levels in thermodynamics, a subject that relies heavily on the symbolic (mathematical). The reliance on symbolic is probably due in no small part to the emphasis most textbooks place on this. The research looked at ways that classroom interactions can develop the translation across all levels, and most interestingly, a sequence of instructor interactions that showed an improvement in coordination of the three dimensions of triplet. There is a lot of good stuff for teachers of introductory thermodynamics here.

3. The all-seeing eye of prior knowledge (Boddey and de Berg, CERP).

My own interest in prior knowledge as a gauge for future learning means I greedily pick up anything that discusses it in further detail. And this paper does that well. It looked at the impact of completing a bridging course on students who had no previous chemistry, comparing them with those who had school chemistry. However, this study takes that typical analysis further, and interviewed students. These are used to tease out different levels of prior knowledge, with the ability to apply being supreme in improving exam performance.

4.  Flipped classes compared to active classes (Flynn, CERP).

I read a lot of papers on flipped lectures this year in preparing a review on the topic. This was by far the most comprehensive. Flipping is examined in small and large classes, and crucially any impact or improvement is discussed by comparing with an already active classroom. A detailed model for implementation of flipped lectures linking before, during, and after class activities is presented, and the whole piece is set in the context of curriculum design. This is dissemination of good practice at its best.

5. Defining problem solving strategies (Randles and Overton, CERP).

This paper gained a lot of attention at the time of publication, as it compares problem solving strategies of different groups in chemistry; undergraduates, academics, and industrialists. Beyond the headline though, I liked it particularly for its method – it is based on grounded theory, and the introductory sections give a very good overview on how this was achieved, which I think will be informative to many. Table 2 in particular demonstrates coding and example quotes which is very useful.

6. How do students experience labs? (Kable and more, IJSE)

This is a large scale project with a long gestation – the ultimate aim is to develop a laboratory experience survey, and in particular a survey for individual laboratory experiments, with a view to their iterative improvement. Three factors – motivation (interest and responsibility), assessment, and resources – are related to students’ positive experience of laboratory work. The survey probes students’ responses to these (some like quality of resources give surprising results). It is useful for anyone thinking about tweaking laboratory instruction, and looking for somewhere to start.

7. Approaches to learning and success in chemistry (Sinapuelas and Stacy, JRST)

Set in the context of transition from school to university, this work describes the categorisation of four levels of learning approaches (gathering facts, learning procedures, confirming understanding, applying ideas). I like these categories as they are a bit more nuanced, and perhaps less judgemental, than surface vs deep learning. The approach level correlates with exam performance. The paper discusses the use of learning resources to encourage students to move from learning procedures (level 2) to confirming understanding (level 3). There are in-depth descriptions characterising each level, and these will be informative to anyone thinking about how to support students’ independent study.

8. Exploring retention (Shedlosky-Shoemaker and Fautch, JCE).

This article categorises some psychological factors aiming to explain why some students do not complete their degree. Students switching degrees tend to have higher self-doubt (in general rather than just for chemistry) and performance anxiety. Motivation did not appear to distinguish between those switching or leaving a course and those staying. The study is useful for those interested in transition, as it challenges some common conceptions about student experiences and motivations. This study appears to suggest much more personal factors are at play.

9. Rethinking central ideas in chemistry (Talanquer, JCE).

Talanquer publishes regularly and operates on a different intellectual plane to most of us. While I can’t say I understand every argument he makes, he always provokes thought. In this commentary, he discusses the central ideas of introductory chemistry (atoms, elements, bonds, etc), and proposes alternative central ideas (chemical identity, mechanisms, etc). It’s one of a series of articles by several authors (including Talanquer himself) that continually challenge the approach we currently take to chemistry. It’s difficult to say whether this will ever become more than a thought experiment though…

10. Newcomers to education literature (Seethaler, JCE).

If you have ever wished to explain to a scientist colleague how education research “works”, this paper might be of use. It considers 5 things scientists should know about education research: what papers can tell you (and their limitations), theoretical bases in education research, a little on misconceptions and content inventories, describing learning, and tools of the trade. It’s a short article at three pages long, so necessarily leaves a lot of information out. But it is a nice primer.

Finally

The craziest graphical abstract of the year must go to Fung’s camera set up. And believe me, the competition was intense.

ed-2014-009624_0007

This week I’m reading… Changing STEM education

Summer is a great time for Good Intentions and Forward Planning… with that in mind I’ve been reading about what way we teach chemistry, how we know it’s not the best approach, and what might be done to change it.

Is changing the curriculum enough?

Bodner (1992) opens his discussion on reform in chemistry education writes that “recent concern”, way back in 1992, is not unique. He states that there are repeated cycles of concern about science education over the 20th century, followed by long periods of complacency. Scientists and educators usually respond in three ways:

  1. restructure the curriculum,
  2. attract more young people to science,
  3. try to change science teaching at primary and secondary level.

However, Bodner proposes that the problem is not in attracting people to science at the early stages, but keeping them on when they reach university, and that we at third level have much to learn with from our colleagues in primary and secondary level. Instead of changing the curriculum (the topics taught), his focus is on changing the way the curriculum is taught. In an era when textbooks (and one presumes now, the internet) have all the information one wants, the information dissemination component of a lecture is redundant. Bodner makes a case that students can perform quite well on a question involving equilibrium without understanding its relationship to other concepts taught in the same course, instead advocating an active learning classroom centred around discussion and explanation; dialogue between lecturers and student. He even offers a PhD thesis to back up his argument (A paper, with a great title, derived from this is here: PDF).

Are we there yet?

One of the frustrations I’m sure many who have been around the block a few times feel is the pace of change is so slow (read: glacial). 18 years after Bodner’s paper, Talanquer and Pollard (2010) criticize the chemistry curriculum at universities as “fact-based and encyclopedic, built upon a collection of isolated topics… detached from the practices, ways of thinking, and applications of both chemistry research and chemistry education research in the 21st century.” Their paper in CERP presents an argument for teaching “how we think instead of what we know”.

They describe their Chemistry XXI curriculum, which presents an introductory chemistry curriculum in eight units, each titled by a question. For example, Unit 1 is “How do we distinguish substances?”, consisting of four modules (1 to 2 weeks of work): “searching for differences, modelling matter, comparing masses, determining composition.” The chemical concepts mapping onto these include the particulate model of matter, mole and molar mass, and elemental composition.

Talanquer CERP 2010 imageAssessment of this approach is by a variety of means, including small group in-class activities. An example is provided for a component on physical and electronic properties of metals and non-metals; students are asked to design an LED, justifying their choices. I think this fits nicely into the discursive ideas Bodner mentions. Summative assessment is based on answering questions in a context-based scenario – picture shown.

In what is a very valuable addition to this discussion, learning progression levels are included, allowing student understanding of concepts and ideas, so that their progressive development can be monitored. It’s a paper that’s worth serious consideration and deserves more widespread awareness.

Keep on Truckin’

Finally in our trio is Martin Goedhart’s chapter in the recently published book Chemistry Education. Echoing the basis provided by Talanquer and Pollard, he argues that the traditional disciplines of analytical, organic, inorganic, physical, and biochemistry were reflective of what chemists were doing in research and practice. However, the interdisciplinary nature of our subject demands new divisions; Goedhart proposes three competency areas synthesis, analysis, and modelling. For example in analysis, the overall aim is “acquiring information about the composition and structure of substances and mixtures”. The key competencies are “sampling, using instruments, data interpretation”, with knowledge areas including instruments, methods and techniques, sample prep, etc. As an example of how the approach differs, he states that students should be able to select appropriate techniques for their analysis; our current emphasis is on the catalogue of facts on how each technique works. I think this echoes Talanquer’s point about shifting the emphasis on from what we know to how we think.

Mobile phones for analysis in school and undergrad laboratories

 “Although the majority of scientific workers utilize photography for illustrative purposes, a survey of the literature shows that only a limited number fully appreciate its usefulness as a means for recording data.”

So wrote GE Matthew and JI Crabtree in a 1927 article of Journal of Chemical Education.[1] Photography has come on since then, when they cautioned readers on the properties and limitations of photographic emulsion for quantitative purposes. Now it is much simpler, and there are many applications of photography using a mobile phone camera and a suitable app. I’ve summarised five of these below.

1. Colorimetric Analysis[2]

This is a paper I have written about before. It essentially allows a Beer-Lambert plot to be performed from a mobile phone picture of a series of solutions of different concentrations of a coloured dye. The practical is extended to Lucozade. The original paper suggests the use of PC imaging software, but good results can be obtained with a mobile phone RGB colour determination app such as RGB Camera. Some more detail on that process is in the earlier blog post.

Graphical abstract from J Chem Ed.
Graphical abstract from J Chem Ed.

2. Colorimetry for chemical kinetics[3]

Image: J Chem Ed
Image: J Chem Ed

This recently published paper extends the idea outlined above and uses colorimetry for kinetic analysis. The experiment is the hydrolysis of crystal violet with hydroxide ions. A similar set up to that described above, except the camera is set to acquire images every 10 s automatically. The authors describe the analysis protocol well, and suggest a mechanism for reducing data analysis time. The app mentioned here (for Android) is Camera FV-5 Lite. The supplementary information has detailed student instructions for image analysis. A very clever idea.

3. A variation on flame photometry for testing for sodium in sea water and coconut water[4]

Image: J Chem Ed
Image: J Chem Ed

This is a really excellent idea where the flame test is monitored by recording a video on the mobile phone. Stock saline solutions from between 20 to 160 mg/dm3 were prepared and used to build a calibration curve. The flame colour was recorded on video. To do this, the phone was fixed approximately 40 cm from the flame, with a white background 40 cm in the opposite direction. Distilled water was sprayed into the flame to record the blank, followed by the calibration solutions and the analytes (sea water and coconut water). The videos were replayed to find the point at which the light was most intense. Again, the authors go into quite complex PC imaging analysis; a simpler option would be to pause the video at the point of greatest intensity and take a phone screenshot for analysis. RGB data can be obtained, subtracting the baseline (distilled water). I want to do this one!!

4. Determining amino-acid content in tea leaf extract[5] – using microfluidic analysis

Image: J Chem Ed
Image: J Chem Ed

Students prepare a microfluidic device using a wax pen on fliter paper. A 2% ninhydrin solution is prepared (full details in paper) and this is used as the sensor on the filter paper. Tea is boiled and extracted and small drops added to the microfluid wells. After a picture is taken, the RGB data allow for analysis of the glutamic acid present. Again the authors suggest desktop software, but there is no reason why an app can’t be used. The set-up involves ninhydrin and tin (II) chloride, so is probably best for university students.

The microfluidic device is interesting though for students at all levels. Essentially any pattern can be drawn on filter paper with a wax pen. The paper is heated to 135 °C for 30 seconds, and the wax melts through the paper, creating hydrophobic walls. The main author also has a just published RSC Advances paper where the microfluidic devices are prepared using an inkjet printer, and used as a glucose assay, so this is right on the cutting edge.[6] 

5. More microfluidics: analysis of Cu2+ and Fe2+ using colorimetry[7]

Another paper on microfluidics, but this one more applicable for the school classroom. Microfluidic arrays are prepared by cutting designs into Parafilm sheets and enclosing them between paper, and then aluminium foil, before passing through a laminator. Analysis as before is by RGB determination of the spots formed, again the paper’s SI gives a good overview of the analysis protocol for students.

Image: J Chem Ed
Image: J Chem Ed

References

[1] G. E. Matthews and J. I. Crabtree, Photography as a recording medium for scientific work. Part I, J. Chem. Educ., 1927, 4 (1), 9.
[2] Eric Kehoe and R. Lee Penn, Introducing Colorimetric Analysis with Camera Phones and Digital Cameras: An Activity for High School or General Chemistry, J. Chem. Educ.201390 (9), 1191–1195
[3] Theodore R. Knutson, Cassandra M. Knutson, Abbie R. Mozzetti, Antonio R. Campos, Christy L. Haynes, and R. Lee Penn, A Fresh Look at the Crystal Violet Lab with Handheld Camera Colorimetry, J. Chem. Educ., Article ASAP, DOI: 10.1021/ed500876y.
[4] Edgar P. Moraes, Nilbert S. A. da Silva, Camilo de L. M. de Morais, Luiz S. das Neves, and Kassio M. G. de Lima, Low-Cost Method for Quantifying Sodium in Coconut Water and Seawater for the Undergraduate Analytical Chemistry Laboratory: Flame Test, a Mobile Phone Camera, and Image Processing, J. Chem. Educ.201491 (11), pp 1958–1960.
[5] Longfei Cai , Yunying Wu , Chunxiu Xu, and Zefeng Chen, A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acid Content in a Tea Leaf Extract, J. Chem. Educ.201390 (2), 232–234.
[6] Chunxiu Xu, Longfei Cai, Minghua Zhonga and Shuyue Zhenga, Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink, RSC Adv., 2015, 5, 4770-4773.
[7] Myra T. Koesdjojo, Sumate Pengpumkiat, Yuanyuan Wu, Anukul Boonloed, Daniel Huynh, Thomas P. Remcho, and Vincent T. Remcho, Cost Effective Paper-Based Colorimetric Microfluidic Devices and Mobile Phone Camera Readers for the Classroom, J. Chem. Educ. 2015, 92, 737−741.

If scientists designed the history curriculum…

We’ve been here before. Such was the fever to promote science at the expense of everything else in the mid nineteenth century that Thomas Wyse told an audience at the Waterford Literary and Scientific Society in 1833 to ‘banish all modem politics and controversial theology from their arenas’ and look to ‘Priestley, Brougham, and Watt as the true Promethei of our present race – the true architects of our civilisation’.

So it is again, with Ruairí Quinn taking up Wyse’s role, plotting to squeeze together history and geography at school to make room for science. To paraphrase Gerard Collins begging Albert on national TV: please Ruairí, for the good of science, don’t do it, don’t bust the curriculum. I can’t imagine Ruairí thinks this is a good idea, but he probably thinks it will impress our global neighbours, showing that We Take Science Seriously.

What skills does history bring to the curriculum? Spending most of my spare time pretending I am an historian, I have found that history requires me to research, evaluate, interpret evidence, cross reference, criticise, etc etc. These are some pretty good learning outcome verbs that can translate into any discipline – especially science, In fact, one might argue that it is these skills gained in history which develop research and problem-solving skills more than in science. What’s more, history offers the curriculum something science sorely lacks: the requirement to form a written argument.

And can you imagine if we gave the masochists who designed the science curriculum at school—and I reserve special rage for those Satanic ritualists who designed the Leaving Cert chemistry curriculum—even more time? Lots more rules to learn off, lots more model answers to practice. Requiring more time to teach science is like making new laws to add on to existing ones. Resources are required, not more lack of resources. A rookie journalist hoping to make a break would do well to go investigate the NCCA, the people ultimately charged with what defines our “knowledge economy”. These few people know what they are talking about, have some great ideas, based on solid research, but are held hostage by a lack of resources and an elite mafia who don’t want to let go of “their” curriculum.

To illustrate this, an interesting drinking game this Good Friday would be imagine how the masters of our current science curriculum might design a history curriculum. We like to build up on the basics in science, so obviously you’d start in the neolithic era, moving each year until reaching the entire early modern to modern era in 6th year. Bonus shots go for squeezing together more than one topic in a lesson plan—the Lockout and the Nazis perhaps—or requiring completely irrelevant recall of facts, why not learn off the Annals? They’d have a field day. Jokes aside, you can’t give these people more time on the curriculum.

If anything good for history is coming out of this, it is that there is a well-known academic coming out in support of his discipline at school. Well done Diarmaid Ferriter, you are now forgiven for The Tenements. In science, our big-wig academics are too busy telling the media, the grant agencies, and probably themselves how amazing their research is and how it should receive more money. I wish they would take a look school-wards occasionally so that the students who will eventually come to complete their research have the curriculum they deserve.

Paper Conservation Chemistry in our Curriculum

OFC_EiC_March-2013_148_tcm18-227674

My latest article in Education in Chemistry is on paper conservation. The article was inspired by hearing and reading about the great conservation work that goes on at the National Library of Ireland.

I would also like to initiate a conversation with anyone interested in developing/collating material for including paper chemistry and conservation in the curriculum.

The article also made the cover – click on the image to go to it. A PDF version of how it appears in the magazine is at the end of the page linked.

 

The Application of Technology to Enhance Chemistry Education

Call for Papers

Contributions are invited for a themed, peer-reviewed issue of CERP on The Application of Technology to Enhance Chemistry Education which is scheduled for publication Autumn 2013. Guest Editors: Michael K Seery and Claire McDonnell.

Topics for contribution may include but are not limited to:

  •  Blended learning to support ‘traditional’ instruction (e.g. online resources, wikis, blogs, e-portfolios)
  • In-class technology (e.g. clickers, iPads or equivalent)
  • Online learning (e.g. distance learning initiatives, online collaborative learning, active and interactive eLearning, computer simulations of practical work, modelling software for online learning)
  • Cognitive considerations for online learning (e.g. designing online resources)
  • E-assessment (e.g. formative assessment strategies, automated feedback)
  • Reviews and Perspectives (‘State of play’ of current trends, historical perspective)

Contributions should align with the principles and criteria specified in the recent CERP editorial (Chem. Educ. Res. Pract., 2012, 13, 4-7). To summarise, there is a requirement that papers provide an argument for some new knowledge supported by careful analysis of evidence; either by reviewing the existing literature, analysing carefully collected research data or rigorously evaluating innovative practice.

Submission of Manuscripts

Manuscripts should be submitted in the format required by the journal using the ScholarOne online manuscript submission platform available through the journal homepage http://www.rsc.org/CERP/. Enquiries concerning the suitability of possible contributions should be sent directly by email to: Michael Seery michael.seery@dit.ie and/or Claire McDonnell: claire.mcdonnell@dit.ie.

Important Dates

Manuscripts should be submitted by 4th January 2013 to be eligible for consideration in the theme issue, subject to authors being able to address revisions without too much delay. Manuscripts received after the deadline can still be considered for the theme issue, but the usual peer review process will not be compromised to reach decisions on publication, and if such articles are accepted for publication too late to be included in the theme issue then they would be included instead in a subsequent issue.

As with other CERP contributions, articles intended for the theme issue will be published as advanced articles on line as soon as they have been set and proofs have been checked, ahead of publication in the theme issue itself.

Variety in Chemistry Education Meeting, 2012

Variety in Chemistry Education is one of my favourite conferences which I attend annually (2010 and 2011 reports here). This year’s meeting was held along with the Physics Higher Education Conference, providing the catchy Twitter hashtag #vicephec. The meeting was opened with a keynote by Prof Martyn Poliakoff, inorganic chemist from Nottingham, but better known to 102,403 YouTube subscribers as the star of the Periodic Table of Videos series, which have been viewed over 25,243,185 times. Prof Poliakoff received the 2011 RSC Nyholm Prize—awarded every other year for Education. He spoke about the development of the videos, working with video journalist Brady Haran to create 120 videos with over 4 hours film time in a little over a month. The urgency was caused by the pending end of a financial year! After completing the periodic table, they continued to work on videos (everything from concrete to Viagra). What struck me most though from this presentation was the sense of collaboration—a world-renowned scientist sharing his knowledge with that of a skilled video journalist. Hopefully it is a collaboration that might inspire others. Prof Poliakoff’s talk—which was personal and beautifully delivered—ended with a special tribute video to Ronald Nyholm (one of the two men behind VSEPR theory), which I suspect had even the quantum physicists choking back a tear.

With the onset of presentations (15 mins) and bytes (5 mins), it became clear that the organisers had carefully thought about the programme, with clear themes emerging. The first of those is the increasing use of technology in education. These included several talks on supporting in-class learning using multi-media resources. Simon Lancaster (UEA) spoke of a trial regarding flipping the lecture, and on a similar concept, David McGarvey and Katherine Haxton (Keele) spoke about pre-lecture activities they developed for their students (See September 2012 Education in Chemistry for a full article on pre-lecture activities). Dylan Williams talked about using multi-media clips for supporting lectures, and David Read on some fantastic worked answer videos for allowing students to engage in self-assessed work (during the summer, which they liked!). Technology continued into workshops on screencasting, wikis and online practicals.

The keynote from David McGarvey (Keele), the 2011 RSC Higher Education Teaching Award winner, stayed with the technology theme. He has used a wide range of technologies to support innovations in laboratory practicals, presentation skills and most impressively, audio feedback. His work on feedback—especially interim feedback—is inspiring. We were spoiled with a preview of this talk at the Irish Variety in Chemistry meeting earlier this year, which I wrote about here. I always come away from his talks with  lots of great ideas, so well thought out, and a concern that he can’t be sleeping much if he is working on so many great innovations at once.

Another theme that arose was that of student support in terms of college experience. Transition from school to college, international students, and distance learning students all have specific issues. An example was the talk by Gita Sedghi (Liverpool) spoke about supporting international students so that they integrated and interacted fully in their new environment, with a suite of supports such as pre-arrival planning, peer mentoring and student monitoring (interviews).

Context and problem based learning continues to be popular, and the recent focus by the RSC and the HE-STEM programme has generated several new resources available to use. These included an excellent package on costing and developing a fireworks display developed by Gan Schermer (Bath), a scenario on the theme of energy by Dylan Williams (Leicester) and talk on the process of redesigning a traditional hardness of water practical to give a multi-week C/PBL scenario for first years (Karen Moss, NTU). Two workshops on this theme were on designing ill-conceived problems and on developing commercial skills for chemists.

The third keynote was given by Paul van Kampen (DCU). This excellent talk outlined his personal journey in becoming a science education researcher as well as being a scientist. It was interesting as he highlighted what aspects of being a scientist could translate into education research, as well as illustrating what was different in the two research fields—for example the inability to “control” the sample in a science education “experiment”.  Many in the audience are actively at the boundary of scientist/science educationalist and the talk was a useful marker in the considerations around designing, implementing and validating educational materials. His talk also highlighted the great advantage of co-hosting the meeting with physicists; as even though we are based in the same city, we as chemist and physicist had never previously met. The closing forum agreed the experiment of co-hosting was successful, and if #vicephec13 is half as successful as this busy, informative, and entertaining meeting, it is a must-see on next year’s calendar.

Some highlights

  • There is a kid in us all: “We made chlorine gas!” Over-excited delegate after the Microscale Chemistry workshop (delivered by Bob Worley, CLEAPSS/Brunel)
  • Useful tip: Use personal whiteboards as a low-tech version of interactive teaching (Simon Lancaster, UEA)
  • Talk that changed my mind: A trio of talks on Peerwise, including Kyle Galloway (Nottingham) whereby students developed quiz questions to help each other study. Students liked having questions specific to their course, and enjoyed writing questions.
  • Simplest idea is the best: Katherine Haxton (Keele) on getting students to do a screencast instead of an oral presentation. It is self, peer, and tutor assessed. Some excellent meta-cognitive concepts included in this well designed innovation.
  • Time saver: Stephen Ashworth (UEA) on using Excel to generate a large number of questions for online VLEs with specific feedback. CONCATENATE is my new favourite Excel function. Absolute genius.
  • Change to teaching: More interim feedback, David McGarvey’s work on using interim audio feedback illustrates what can be achieved.

The entire meeting’s tweets have been added to Storify, which includes many links and references to resources and websites mentioned. I plan to compile a list of these and add them here.

Showing Worked Examples in Blackboard Quizzes

I’ve been thinking of ways to include worked examples and hints in Blackboard VLE quizzes. Cognitive Load theory has something called the Worked Example effect, whereby learners who receive direct instruction in the form of worked examples perform better than those who don’t. The reason is attributed to providing novice learners with an approach to solving a problem that they can replicate, thus alleviating the working memory load while solving a problem. There’s some more on worked examples here.

The question then was how to provide a worked example (or a hint, a slightly less informative way to guide students) in Blackboard quizzes. I want to have them at the point where students can click on them as they need them, rather than having to leave the quiz and go off somewhere else to get help. I did this in this trial with Javascript buttons. The video below goes through how it looks and the mechanics of it.