Significant omission from my top 10 #chemed post!

0. Text messages to explore students’ study habits (Ye, Oueini, Dickerson, and Lewis, CERP)

I was excited to see Scott Lewis speak at the Conference That Shall Not Be Named during the summer as I really love his work. This paper outlines an interesting way to find out about student study habits, using text-message prompts. Students received periodic text messages asking them if they have studied in the past 48 hours. The method is ingenious. Results are discussed in terms of cluster analysis (didn’t study as much, used textbook/practiced problems, and online homework/reviewed notes). There is lots of good stuff here for those interested in students’ study and supporting independent study time. Lewis often publishes with Jennifer Lewis, and their papers are master-classes in quantitative data analysis. (Note this candidate for my top ten was so obvious I left it out in the original draft, so now it is a top 11…)

I’ve now included this in the original post.

Scott Lewis CERP

Related Posts:

My ten favourite #chemed articles of 2015

This post is a sure-fire way to lose friends… but I’m going to pick 10 papers that were published this year that I found interesting and/or useful. This is not to say they are ten of the best; everyone will have their own 10 “best” based on their own contexts.

Caveats done, here are 10 papers on chemistry education research that stood out for me this year:

0. Text messages to explore students’ study habits (Ye, Oueini, Dickerson, and Lewis, CERP)

I was excited to see Scott Lewis speak at the Conference That Shall Not Be Named during the summer as I really love his work. This paper outlines an interesting way to find out about student study habits, using text-message prompts. Students received periodic text messages asking them if they have studied in the past 48 hours. The method is ingenious. Results are discussed in terms of cluster analysis (didn’t study as much, used textbook/practiced problems, and online homework/reviewed notes). There is lots of good stuff here for those interested in students’ study and supporting independent study time. Lewis often publishes with Jennifer Lewis, and together their papers are master-classes in quantitative data analysis. (Note this candidate for my top ten was so obvious I left it out in the original draft, so now it is a top 11…)

1. What do students learn in the laboratory (Galloway and Lowery-Bretz, CERP)?

This paper reports on an investigation using video cameras on the student to record their work in a chemistry lab. Students were interviewed soon after the lab. While we can see what students physically do while they are in the lab (psychomotor learning), it is harder to measure cognitive and affective experiences. This study set about trying to measure these, in the context of what the student considered to be meaningful learning. The paper is important for understanding learning that is going on in the laboratory (or not, in the case of recipe labs), but I liked it most for the use of video in collection of data.

2. Johnstone’s triangle in physical chemistry (Becker, Stanford, Towns, and Cole, CERP).

We are familiar with the importance of Johnstone’s triangle, but a lot of research often points to introductory chemistry, or the US “Gen Chem”. In this paper, consideration is given to understanding whether and how students relate macro, micro, and symbolic levels in thermodynamics, a subject that relies heavily on the symbolic (mathematical). The reliance on symbolic is probably due in no small part to the emphasis most textbooks place on this. The research looked at ways that classroom interactions can develop the translation across all levels, and most interestingly, a sequence of instructor interactions that showed an improvement in coordination of the three dimensions of triplet. There is a lot of good stuff for teachers of introductory thermodynamics here.

3. The all-seeing eye of prior knowledge (Boddey and de Berg, CERP).

My own interest in prior knowledge as a gauge for future learning means I greedily pick up anything that discusses it in further detail. And this paper does that well. It looked at the impact of completing a bridging course on students who had no previous chemistry, comparing them with those who had school chemistry. However, this study takes that typical analysis further, and interviewed students. These are used to tease out different levels of prior knowledge, with the ability to apply being supreme in improving exam performance.

4.  Flipped classes compared to active classes (Flynn, CERP).

I read a lot of papers on flipped lectures this year in preparing a review on the topic. This was by far the most comprehensive. Flipping is examined in small and large classes, and crucially any impact or improvement is discussed by comparing with an already active classroom. A detailed model for implementation of flipped lectures linking before, during, and after class activities is presented, and the whole piece is set in the context of curriculum design. This is dissemination of good practice at its best.

5. Defining problem solving strategies (Randles and Overton, CERP).

This paper gained a lot of attention at the time of publication, as it compares problem solving strategies of different groups in chemistry; undergraduates, academics, and industrialists. Beyond the headline though, I liked it particularly for its method – it is based on grounded theory, and the introductory sections give a very good overview on how this was achieved, which I think will be informative to many. Table 2 in particular demonstrates coding and example quotes which is very useful.

6. How do students experience labs? (Kable and more, IJSE)

This is a large scale project with a long gestation – the ultimate aim is to develop a laboratory experience survey, and in particular a survey for individual laboratory experiments, with a view to their iterative improvement. Three factors – motivation (interest and responsibility), assessment, and resources – are related to students’ positive experience of laboratory work. The survey probes students’ responses to these (some like quality of resources give surprising results). It is useful for anyone thinking about tweaking laboratory instruction, and looking for somewhere to start.

7. Approaches to learning and success in chemistry (Sinapuelas and Stacy, JRST)

Set in the context of transition from school to university, this work describes the categorisation of four levels of learning approaches (gathering facts, learning procedures, confirming understanding, applying ideas). I like these categories as they are a bit more nuanced, and perhaps less judgemental, than surface vs deep learning. The approach level correlates with exam performance. The paper discusses the use of learning resources to encourage students to move from learning procedures (level 2) to confirming understanding (level 3). There are in-depth descriptions characterising each level, and these will be informative to anyone thinking about how to support students’ independent study.

8. Exploring retention (Shedlosky-Shoemaker and Fautch, JCE).

This article categorises some psychological factors aiming to explain why some students do not complete their degree. Students switching degrees tend to have higher self-doubt (in general rather than just for chemistry) and performance anxiety. Motivation did not appear to distinguish between those switching or leaving a course and those staying. The study is useful for those interested in transition, as it challenges some common conceptions about student experiences and motivations. This study appears to suggest much more personal factors are at play.

9. Rethinking central ideas in chemistry (Talanquer, JCE).

Talanquer publishes regularly and operates on a different intellectual plane to most of us. While I can’t say I understand every argument he makes, he always provokes thought. In this commentary, he discusses the central ideas of introductory chemistry (atoms, elements, bonds, etc), and proposes alternative central ideas (chemical identity, mechanisms, etc). It’s one of a series of articles by several authors (including Talanquer himself) that continually challenge the approach we currently take to chemistry. It’s difficult to say whether this will ever become more than a thought experiment though…

10. Newcomers to education literature (Seethaler, JCE).

If you have ever wished to explain to a scientist colleague how education research “works”, this paper might be of use. It considers 5 things scientists should know about education research: what papers can tell you (and their limitations), theoretical bases in education research, a little on misconceptions and content inventories, describing learning, and tools of the trade. It’s a short article at three pages long, so necessarily leaves a lot of information out. But it is a nice primer.

Finally

The craziest graphical abstract of the year must go to Fung’s camera set up. And believe me, the competition was intense.

ed-2014-009624_0007

Related Posts:

Journal Club #1: Metacognitive Learning Strategies in Science

The aim of the “Journal Club” is to present a summary of a journal article and discuss it in the comments below or on social meeja. The emphasis is not on discussing the paper itself (e.g. methodology etc) but more what the observations or outcomes reported can tell us about our own practice. Get involved! It’s friendly. Be nice. And if you wish to submit your own summary of an article you like, please do. If you can’t access the paper in question, emailing the corresponding author usually works (email details given on journal page linked below).

#1: E Cook, E Kennedy and S McGuire, Effect of Teaching Metacognitive Learning Strategies on Performance in General Chemistry Courses, Journal of Chemical Education, 2013, 90, 961-7.

I am a little biased in choosing this paper as I heard Saundra McGuire speak at Gordon CERP conference two years ago on this topic. This is one inspirational lady! This paper opens by saying that there are many teacher-focussed interventions that work on increasing retention and success. However, this article describes the concept of teaching students how to help themselves in learning and applying new information. The intervention is simple: a single 50 minute lecture on developing metacognitive learning strategies was provided to freshman chemists. Analysis of results shows that there was a significant improvement in their grades relative to those who hadn’t sat in on this lecture.

The timing of the intervention lecture was just after an early semester test. The authors argue that giving students who have done well in school tests information on study skills before they have completed any college tests is a folly, as the students are of the (correct) opinion that their study methods to date have been effective. However, after their first college test, students may be more receptive to thinking about how to study, especially if they haven’t performed as well as they usually had in school tests.

The lecture itself (available in supplementary information) uses the Bloom’s Taxonomy structure to show students the levels of learning, and what different study approaches apply to each level. This keeps it simple and logical, which I think is an attractive element of the work. Armed with an understanding of the different levels of learning, a study cycle is proposed. Students reported in response to questions that they understood the differences between school and college learning requirements having been shown the Bloom framework. The (revised) levels of Bloom’s taxonomy are outlined below:

Bloom’s Level (Revised) Typical Activity Level Typical Study Strategy Rationale
Creating Generating, producing information into new patterns Postgrad
Evaluation Making judgments based on criteria
Analysis Breaking components apart and relating them to each other Undergrad Working through problems without examples; working in groups Working through problems and hearing how others think a problem aids understanding
Application Using knowledge to solve problems, carry out procedures
Comprehension Restating in your own words, paraphrasing or summarising School Previewing lecture material; Paraphrasing/ rewriting lecture notes Helps students organise new information and connect to what they know
Knowledge Memorizing information, recalling but perhaps not understanding

Based on this, a “Preview, Attend, Review” study cycle is proposed, so that students are exposed to the class material three times within a short period (24 h). This is followed by a study session, consisting of four steps:

  1. Set a goal (1 – 2 mins) – what is aim of study session?
  2. Study with focus (40 – 50 mins) – interact with material: mind maps, summarize, process, etc
  3. Reward (10 – 15 min break)
  4. Review (5 min) – go over what was just studied.

The paper has detailed statistical analysis on how this intervention improved student grades. I like it because it is realistic – it can be delivered in a busy semester relatively easily, as it only takes one lecture slot; and it is student friendly – a welcome addition to the plethora of study skills books and strategies that are vague and generic. This to me seems quite focussed in explaining to students why thinking about how they study is important and how they might go about improving their study skills and learning. In the mix, metacognitive skills are being incorporated into the curriculum by stealth.

What do you think?

Related Posts: