Chemistry, Laboratory, Pedagogy, Royal Society of Chemistry

Planning a new book on laboratory education

Contracts have been signed so I am happy to say that I am writing a book on chemistry laboratory education as part of the RSC’s new Advances in Chemistry Education series due for publication mid 2017.

I’ve long had an interest in lab education, since stumbling across David McGarvey’s “Experimenting with Undergraduate Practicals” in University Chemistry Education (now CERP). Soon after, I met Stuart Bennett, now retired, from Open University at a European summer school. Stuart spoke about lab education and its potential affordances in the curriculum. He was an enormous influence on my thinking in chemistry education, and in practical work in particular. We’d later co-author a chapter on lab education for a book for new lecturers in chemistry published by the RSC (itself a good example on the benefits of European collaboration). My first piece of published education research was based on laboratory work; a report in CERP on the implementation of mini-projects in chemistry curriculum, completed with good friends and colleagues Claire Mc Donnell and Christine O’Connor. So I’ve been thinking about laboratory work for a long time.

Why a book?

A question I will likely be asking with increasing despair over the coming months is: why am I writing a book? To reaffirm to myself as much as anything else, and to remind me if I get lost on the way, the reasons are pretty straightforward.

My career decisions and personal interests over the last few years have meant that I have moved my focus entirely to chemistry education. Initially this involved sneaking in some reading between the covers of J. Mat. Chem. when I was meant to be catching up on metal oxide photocatalysis. But as time went on and thanks to the support of others involved in chemistry education, this interest became stronger. I eventually decided to make a break with chemistry and move into chemistry education research. (One of the nicest things for me personally about joining Edinburgh was that this interest was ultimately validated.)

So while my knowledge of latest chemistry research is limited mainly to Chemistry World reports, one thing I do know well is the chemistry education research literature. And there is a lot of literature on laboratory education. But as I read it and try to keep on top of it, it is apparent that much of the literature on laboratory education falls into themes, and by a bit of rethinking of these themes and by taking a curriculum design approach, some guiding principles for laboratory education can be drawn up. And that a compilation of such principles, within the context of offering a roadmap or plan for laboratory education might be useful to others.

And this is what I hope to offer. The book will be purposefully targeted at anyone responsible for taking a traditional university level chemistry laboratory course and looking to change it. In reality, such change is an enormous task, and being pragmatic, needs to happen in phases. It’s tempting then to tweak bits and change bits based on some innovation presented at a conference or seen in a paper. But there needs to be an overall design for the entire student experience, so that incremental changes sum up to an overall consistent whole piece. Furthermore, by offering a roadmap or overall design, I hope to empower members of staff who may be responsible for such change by giving the evidence they may need to rationalise changes to colleagues. Everyone has an opinion on laboratory education! The aim is to provide evidence-based design approaches.

My bookshelves are groaning with excellent books on laboratory education. I first came across Teaching in Laboratories by Boud Dunn and Hegarty-Hazel back in the days when I stumbled across McGarvey’s article. I still refer to it, as even though it was published in 1986, it still carries a lot of useful material. Woolnough and Allsop’s Practical Work in Science is also excellent; crystal clear on the role and value of laboratory education and its distinction from lecture based curriculum. Hegarty-Hazel also edited The Student Laboratory and the Science Curriculum. Roger Anderson’s book The Experience of Science was published before I was born.

I have bought these now out of print books and several more second hand for less than the cost of a cup of coffee. I have learned lots from them, but am mindful that (justifiably) well-known and comprehensive as they are, they are now out of print and our university laboratories have not seen much change in the forty years since Anderson.

I am very conscious of this as I structure my own book. I can speculate that books about science laboratories at both secondary and tertiary level may be too broad. So the book is focussing exclusively on chemistry and higher education.

Secondly, the book is very clearly directed at those implementing a new approach, those involved in change. Ultimately it is their drive and energy and input that decides the direction of changes that will occur.  I hope that by speaking directly to them with a clear rationale and approach based on an up-to-date literature, that it may ease the workload somewhat for those looking to rethink laboratory education in their curricula. Now I just need to actually write it.

Chemistry, Pedagogy

Alex Johnstone’s 10 Educational Commandments

My thanks to Prof Tina Overton for alerting me to the fact that these exist. I subsequently happened across them in this article detailing an interview with Prof Johnstone (1), and thought they would be useful to share.

Ten Educational Commandments 

1. What is learned is controlled by what you already know and understand.

2. How you learn is controlled by how you learned in the past (related to learning style but also to your interpretation of the “rules”).

3. If learning is to be meaningful, it has to link on to existing knowledge and skills, enriching both (2).

4. The amount of material to be processed in unit time is limited (3).

5. Feedback and reassurance are necessary for comfortable learning, and assessment should be humane.

6. Cognisance should be taken of learning styles and motivation.

7. Students should consolidate their learning by asking themselves about what goes on in their own heads— metacognition.

8. There should be room for problem solving in its fullest sense (4).

9. There should be room to create, defend, try out, hypothesise.

10. There should be opportunity given to teach (you don’t really learn until you teach) (5).

Johnstone told his interviewer that he didn’t claim any originality for the statements, which his students called the 10 educational commandments. Rather he merely brought together well known ideas from the literature. But, and importantly for this fan, Johnstone said that they have been built into his own research and practice, using them as “stars to steer by”.

References

  1. Cardellini, L, J. Chem. Educ., 2000, 77, 12, 1571.
  2. Johnstone, A. H. Chemical Education Research and Practice in Europe (CERAPIE) 2000, 1, 9–15; online at http://www.uoi.gr/cerp/2000_January/contents.html.
  3. Johnstone, A. H. J. Chem. Educ. 1993, 70, 701–705
  4. Johnstone, A. H. In Creative Problem Solving in Chemistry; Wood, C. A., Ed.; Royal Society of Chemistry: London, 1993.
  5. Sirhan, G.; Gray, C.; Johnstone, A. H.; Reid, N. Univ. Chem. Educ. 1999, 3, 43–46.
Chemistry, Laboratory, Pedagogy

ChemEd Journal Publications from UK since 2015

I’ve compiled this list for another purpose and thought it might be useful to share here. 

The following are publications I can find* from UK corresponding authors on chemistry education research, practice, and laboratory work relevant to HE since beginning of 2015.  There are lots of interesting finds and useful articles. Most are laboratory experiments and activities, Some refer to teaching practice or underlying principles.

I don’t imagine this is a fully comprehensive list, so do let me know what’s missing. It’s in approximate chronological order from beginning of 2015.

  1. Surrey (Lygo-Baker): Teaching polymer chemistry
  2. Reading (Strohfeldt): PBL medicinal chemistry practical
  3. Astra Zeneca and Huddersfield (Hill and Sweeney): A flow chart for reaction work up
  4. Bath (Chew): Lab experiment: coffee grounds to biodiesel
  5. Nottingham (Galloway): PeerWise for revision
  6. Hertfordshire (Fergus): Context examples of recreational drugs for spectroscopy and introductory organic chemistry 
  7. Overton (was Hull): Dynamic problem based learning
  8. Durham (Hurst, now at York): Lab Experiment: Rheology of PVA gels
  9. Reading (Cranwell): Lab experiment: Songoshira reaction
  10. Edinburgh (Seery): Flipped chemistry trial
  11. Oaklands (Smith): Synthesis of fullerenes from graphite
  12. Manchester (O’Malley): Virtual labs for physical chemistry MOOC  
  13. Edinburgh (Seery): Review of flipped lectures in HE chemistry
  14. Manchester (Wong): Lab experiment: Paterno-Buchi and kinetics
  15. Southampton (Coles): Electronic lab notebooks in upper level undergraduate lab
  16. UCL (Tomaszewski): Information literacy, searching
  17. St Andrews & Glasgow (Smellie): Lab experiment: Solvent extraction of copper
  18. Imperial (Rzepa): Lab experiment: Assymetric epoxidation in the lab and molecular modelling; electronic lab notebooks
  19. Reading (Cranwell): Lab experiment: Wolff Kishner reaction
  20. Imperial (Rzepa): Using crystal structure databases
  21. Leeds (Mistry): Inquiry based organic lab in first year – students design work up
  22. Manchester (Turner): Molecular modelling activity
  23. Imperial (Haslam & Brechtelsbauer): Lab experiment: vapour pressure with an isosteniscope
  24. Imperial (Parkes): Making a battery from household products
  25. Durham (Bruce and Robson): A corpus for writing chemistry
  26. Who will it be…?!

*For those interested, the Web of Science search details are reproduced below. Results were filtered to remove non-UK papers, conference proceedings and editorials.

ADDRESS:((united kingdom OR UK OR Scotland OR Wales OR England OR (Northern Ireland))) AND TOPIC: (chemistry)AND YEAR PUBLISHED: (2016 or 2015)

Refined by: WEB OF SCIENCE CATEGORIES: ( EDUCATION EDUCATIONAL RESEARCH OR EDUCATION SCIENTIFIC DISCIPLINES )
Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC.

 

Chemistry, Laboratory, Pedagogy

Practical work: theory or practice?

Literature on laboratory education over the last four decades (and more, I’m sure) has a lot to say on the role of practical work in undergraduate curricula. Indeed Baird Lloyd (1992) surveys opinions on the role of practical work in North American General Chemistry syllabi over the course of the 20th century and opens with this delicious quote, apparently offered by a student in 1928 in a $10 competition:

Chemistry laboratory is so intimately connected with the science of chemistry, that, without experimentation, the true spirit of the science cannot possibly be acquired. 

I love this quote because it captures so nicely the sense that laboratory work is at the heart of chemistry teaching – its implicit role in the teaching of chemistry is unquestionable. And although it has been questioned a lot, repeatedly, over the following decades; not many today would advocate a chemistry syllabus that did not contain laboratory work.

I feel another aspect of our consideration of chemistry labs is often unchallenged, and needs to be. That is the notion that chemistry laboratories are in some way proving ground for what students come across in lectures. That they provide an opportunity for students to visualise and see for themselves what the teacher or lecturer was talking about. Or more laudably, to even “discover” for themselves by following a controlled experiment a particular relationship. Didn’t believe it in class that an acid and an alcohol make an ester? Well now you are in labs, you can prove it. Can’t imagine that vapour pressure increases with temperature? Then come on in – we have just the practical for you. Faraday said that he was never able to make a fact his own without seeing it. But then again, he was a great demonstrator.

A problem with this on an operational level, especially at university, and especially in the physical chemistry laboratory, is that is near impossible to schedule practicals so that they follow on from the introduction of theory in class. This leads to the annual complaint from students that they can’t do the practical because they haven’t done the theory. Your students are saying this, if you haven’t heard them, you need to tune your surveys.

It’s an entirely understandable sentiment from students because we situate practicals as a subsidiary of lectures. But this is a false relationship for a variety of reasons. The first is that if you accept a model whereby you teach students chemistry content in lectures, why is there a need to supplement this teaching with a re-teaching of a sub-set of topics, arbitrarily chosen based on the whim of a lab course organiser and the size of a department’s budget? Secondly, although we aim to re-teach, or hit home some major principle again in lab work, we don’t really assess that. We might grade students’ lab report and give feedback, but it is not relevant to them as they won’t need to know it again in that context. The lab report is done. And finally, the model completely undermines the true role of practical work and value it can offer the curriculum.

A different model

When we design lecture courses, we don’t really give much thought to the labs that will go with them. Lecture course content has evolved rapidly to keep up to date with new chemistry; lab development is much slower. So why not the other way around? Why not design lab courses independent of lectures? Lecture courses are one area of the curriculum to learn – typically the content of the curriculum; laboratory courses are another. And what might the role here be?

Woolnough and Allsop (1985), who make a clear and convincing argument for cutting the “Gordian knot” between theory and practice, instead advocate a syllabus that has three aims:

  1. developing practical skills and techniques.
  2. being a problem-solving chemist.
  3. getting a “feel for phenomena”.

The detail of how this can be done is the subject of their book, but involves a syllabus that has “exercises, investigations, and experiences”. To me these amount to the “process” of chemistry. On a general level, I think this approach is worth consideration as it has several impacts on teaching and learning in practice.

Impacts on teaching and learning

Cutting the link between theory and practice means that there is no longer a need to examine students’ understanding of chemistry concepts by proxy. Long introductions, much hated by students, which aim to get the student to understand the theory behind the topic at hand by rephrasing what is given to them in a lab manual, are obsolete. A properly designed syllabus removes the need for students to have had lectures in a particular topic before a lab course. Pre-lab questions can move away from being about random bits of theory and focus on the relationships in the experiment. There is no need for pointless post-lab questions that try to squeeze in a bit more theory.

Instead, students will need to approach the lab with some kind of model for what is happening. This does not need to be the actual equations they learn in lectures. Some thought means they may be able to draw on prior knowledge to inform that model. Of course, the practical will likely involve using some aspect of what they cover or will cover in lectures, but at the stage of doing the practical, it is the fundamental relationship they are considering and exploring. Approaching the lab with a model of a relationship (clearly I am in phys chem labs here!) and exploring that relationship is better reflecting the nature of science, and focussing students attention on the study in question. Group discussions and sharing data are more meaningful. Perhaps labs could even inform future lectures rather than rely on past ones! A final advantage is the reassertion of practical skills and techniques as a valuable aspect of laboratory work.

A key point here is that the laboratory content is appropriate for the level of the curriculum, just as it is when we design lectures. This approach is not advocating random discovery – quite the opposite. But free of the bond with associated lectures, there is scope to develop a much more coherent, independent, and more genuinely complementary laboratory course.

References

Baird W. Lloyd, The 20th Century General Chemistry Laboratory: its various faces, J. Chem. Ed., 1992, 69(11), 866-869.

Brian Woolnaugh and Terry Allsop (1985) Practical Work in Science, Cambridge University Press.

1928 quote

Chemistry, Pedagogy, Royal Society of Chemistry

Reflections on #micer16

Several years ago at the Variety in Chemistry Education conference, there was a rather sombre after-dinner conversation on whether the meeting would continue on in subsequent years. Attendance numbers were low and the age profile was favouring the upper half of the bell-curve.

Last year at Variety I registered before the deadline and got, what I think was the last space, and worried about whether my abstract would be considered. The meeting was packed full of energetic participants interested in teaching from all over UK and Ireland, at various stages of their careers. A swell in numbers is of course expected from the merging with the Physics Higher Education Conference, but the combination of the two is definitely (from this chemist’s perspective) greater than the sum of its parts.

Participants at #micer16
Participants at #micer16

What happened in the mean time would be worthy of a PhD study. How did the fragile strings that were just holding people together in this disparate, struggling community, not snap, but instead strengthen to bring in many newcomers? A complex web of new connections has grown.  While I watched it happen I am not sure how it happened. I suspect it is a confluence of many factors: the efforts of the RSC at a time when chemistry was at a low-point. The determination of the regular attendees to keep supporting it, knowing its inherent value. The ongoing support of people like Stuart Bennett, Dave McGarvey, Stephen Breuer, Bill Byers, and others. And of course the endless energy of Tina Overton and the crew at the Physical Sciences Centre at Hull.

Whatever the process, we are very lucky to have a vibrant community of people willing to push and challenge and innovate in our teaching of chemistry. And that community is willing and is expected to play a vital role in the development of teaching approaches. This requires design and evaluation of these approaches; a consideration of how they work in our educational context. And this requires the knowledge of how to design these research studies and complete these evaluations. Readers will note that Variety now particularly welcome evidence-based approaches.

Most of us in this community are chemists, and the language of education research can be new, and difficult to navigate. Thus a meeting such as MICER held last week aimed to introduce and/or develop approaches in education research. The speakers were excellent, but having selected them I knew they would be! Participants left, from what I could see and saw on social media, energised and enthused about the summer ahead and possible projects.

But we will all return to our individual departments, with the rest of the job to do, and soon enthusiasm gives way to pragmatism, as other things get in the way. It can be difficult to continue to develop expertise and competence in chemistry education research without a focus. The community needs to continue to support itself, and seek support from elsewhere.

How might this happen?

Support from within the community can happen by contacting someone you met at a conference and asking them to be a “critical friend”. Claire Mc Donnell introduced me to this term  and indeed was my critical friend. This is someone whom you trust to talk about your work with, share ideas and approaches, read drafts of work. It is a mutual relationship, and I have found it extremely beneficial, both from the perspective of having someone sensible to talk to, but also from a metacognitive perspective. Talking it out makes me think about it more.

The community can organise informal and formal journal clubs. Is there a particular paper you liked – how did the authors complete a study and what did they draw from it? Why not discuss it with someone, or better still in the open?

Over the next while I am hoping to crystallise these ideas and continue the conversations on how we do chemistry education research. I very much hope you can join me and be an active participant; indeed a proactive participant. So that there is an independent platform, I have set up the website http://micerportal.wordpress.com/ and welcome anyone interested in being involved to get in touch about how we might plan activities or even a series of activities. I hope to see you there.