Chemistry, Contingency Planning, Laboratory, Pedagogy

What is an “online chemistry lab”?

Prelude

The massive shift to online teaching and learning for us in Edinburgh focussed on lectures and tutorials, as we were comparatively lucky in timing – our semester starts and ends very early in the calendar year, which meant that our students were able to complete the majority of their labs. Knowing what I have lived through over the last weeks, I empathise with educators from the other side of the world who are just beginning their teaching year, and those teaching summer semesters: I realise how lucky I am! I mention this as a prelude as I want to discuss what “online labs” are with the luxury of time on my side, but in no way mean to diminish efforts being made by people under extreme time pressures – everyone is doing what they can to fix their local situation. This post is mostly useless as it raises more questions than it answers.

Why labs at all?

Before thinking about what a lab might look like online, we perhaps need to think about why we have labs at all. The literature is really unhelpful in this regard, as there are an array of lists of learning outcomes in labs, but they mostly come from the position that labs happen in the first place, and therefore list what kind of learning can be extracted from them. The place of labs to learn a whole host of non-lab-specific transferable skills is a case in point.

For me there are two and a half reasons why we have labs.

Firstly, labs are in the curriculum for cultural reasons – you couldn’t be a chemist and not have labs. Since von Liebig and perhaps before, labs are an integral part of chemists’ identity.

The second reason is most important to me – labs must offer something that can’t otherwise be learned. So we can learn how to do titration calculations and plot a Beer Lambert law in lectures – what is the lab offering? More generally, we can know all of this chemistry theory, but how do we enact it. For me labs have a distinct pedagogical offering because we can learn techniques, and we can use our knowledge of those techniques, along with a knowledge of chemistry, and pull it together to do something tangible in practice (or on a computer if you are a computational chemist – I am all-inclusive!). This distinction between “knowing” and “doing” is described in the literature as substantive knowledge and syntactical knowledge. This is why “recipe labs” often get a lot of criticism; they are trying to teach technique (poorly, by osmosis) and don’t really require any intellectual input, so they are a poor use of resource and brain capacity.

The half reason is accreditation – we do labs as we “have to” do labs. To be honest, I’m not really sure a University like mine not being accredited would make a difference; of course we love having it, and it is a nice external “check” on what we are doing. But in many ways accreditation is just a reflection on the cultural aspects of chemistry and a (hugely misunderstood) sense of the importance of labs pedagogically, so if the zeitgeist moved away from doing labs in say Edinburgh, Cambridge, Oxford and Durham, I’m not sure it would be an accreditation requirement for much longer. That is to say: accreditation isn’t a reason to have labs.

Moving online – teaching technique

This consideration is important, I think, when we move our labs online. In terms of teaching technique, I worry that with easy access to computer software we’ll try to replicate somehow the in-lab activities, and there will be digital titrations and online spectroscopy before you can blink. (I’m pointing the finger at myself here and here, both from 2011). But even the simulations I have seen which are good, it takes two clicks and a swipey-wipe to get some water into my beaker.  These kind of actions are not associated with the actions in reality. I don’t click to pour water in reality, I hold a beaker, and pour at just the right rate so that the liquid goes into a narrow neck volumetric flask. There is no big red button on any UV/vis spectrometer I have seen that checks the solution for clarity, places the cuvette in the instrument in the right direction and chooses the right wavelength range. So one has to ask (politely) – what benefit is there from the substantial and clever development work going on to create these activities?

I think teaching technique online is going to be really difficult actually, and so the efforts mentioned above are really admirable. I am learning some more advanced aspects of the Adobe CS suite at the moment, and YouTube is my best friend. I look at videos demonstrating something, and then play those videos bit by bit as I do the action, and then I try the action myself. It takes a few goes, because I am not very good and have a terrible memory. But over time, I learn how to do the technique. But I had to practice with reality (which in this case, is easier as reality is also on a computer). How can we ever mimic this for chemistry technique? And an additional note, how do we even begin to mimic the learned caution and care required, to be a safe and competent chemist. Even the masters of online learning, Open University, used to run residential summer schools, although in changing times, these sadly went online too. This is the first thing I am grappling with. (Virtual reality (VR) is an exciting area of development; I have no sense yet whether VR can replicate all of the requirements of teaching technique, but is probably at least an improvement on two dimensions.)

Moving online – syntactical knowledge

We want to teach our chemists to be chemists, not cooks, and being a chemist means having requisite practical techniques to hand and being to use them in situations of your own design. Teaching experimental design is really tough – to teach and to learn – and we’ve invested a lot of effort into it. It involves decision making – both trivial (what solution concentration should I make?) and complex (what is the scope of this experiment and what will it tell me?). Oddly, free from the concerns about technique, this may be easier to replicate online, although I don’t think as a self-contained package (without a lot of effort and perhaps some artificial intelligence), but more as a kind of lab-tutorial, involving ongoing dialogue and lots and lots of decisions for the students to make. Missing from the piece will be the actual “doing” of the experimental work, which is not trivial. If I prepare a solution concentration that’s too high so that I get a bit of precipitate that will distort the spectrum, what do I do in practice? Did I hear a hiss of gas at some stage during a synthetic procedure that may have implications for the reaction? It is hard to replicate those kind of considerations in a mock version online, where you are really relying on the proto-chemist to bring together chemical and technical knowledge, in what I have framed as a “complex learning environment”.

But I see some hope here, certainly for analytical and physical labs, and much of my own thoughts are focussed on this piece and thinking about how we could move at least some of this syntactical knowledge online. I welcome any thoughts and advice!

Links to source

Chemistry, Laboratory, Pedagogy

Inaugural Lecture: Supporting student learning in complex environments

In February I gave my Inaugural Lecture to celebrate the awarding of the Chair in Chemistry Education. The lecture was recorded, and I am grateful to the folks at Academic Audio Transcription who have undertaken the very tough task of transcribing my very strange accent, so that I can now share the lecture with subtitles. As well as introduction (~4 mins) the lecture is in three parts – learning in the lab, a bit about me, and work around student inclusion. If you are interested in some of the aspects mentioned in this lecture, some follow-up links are below, which themselves give the references and people who have underpinned my own work. Enjoy!

Part 1 Intro

Chemistry, Contingency Planning

Managing the open-book exam process

At Edinburgh, we are mostly moving to replacing our 3 hour exams with open book exams. We had initially intended these to be within 24 hour timeframes, but the University has mandated 48. Otherwise, things are as described in the previous post.

So students will need to access an exam paper from a  specific “start time” and submit their written answers no later than 48 hours than that start time. Easy!

Exam Process Guide

Having looked through the various options, I am going with the following 5 step plan based on Blackboard Assignments (rather than Turnitin), described below in terms of front of house and behind the scenes:

For students:

  1. Students will be able to download the paper in advance from Blackboard (called “Learn” here), but it is password protected.
  2. At the start time, the password is released on Blackboard and by email. We didn’t want 150 students trying to download a PDF at the same time.
  3. Students complete their answers on paper.
  4. Students scan their answers using Adobe Scan app to create a PDF. For us, one lecturer corrects one exam question, so we want these uploaded on a question by question basis.
  5. Students upload their answers.

I’ve made a draft video (subtitled) outlining this process, which we are testing robustly this week! We are then going to release to students and allow them play with a mock set-up.

Behind the scenes, this means:

  • Setting timings so that Blackboard courses release in line with exam timetable, and components (e.g. password, answer submission areas) release at the right time
  • Enabling anonymous marking so that the student number doesn’t appear in the file name
  • Allowing multiple submissions so that when students upload the wrong file (it will happen) they can submit the correct file – this needs careful management post hoc.
  • After time window has closed, each question will be downloaded and shared with examiners. I am not going to ask my colleagues to annotate files in any way; they will simply keep a mark tally per exam number related to marking scheme so that they can refer back to that if there are queries.
  • Marks can then be returned in an Excel sheet by exam number, and these can go into “the system” for exam boards.

EASY! 🙂 What can go wrong? (no, really…?)

Chemistry, Contingency Planning

Supporting student study in the “pivot” online

As mentioned in last post, we are focussing our current efforts on two strands – maintaining and promoting academic focus, and being active in student support, the second aspect being led by m’colleague Chris Mowat.

In terms of academic focus, we are moving our closed book exams to open book. Of course this seems “easier”, but I think brings new challenges for students in their study. All that study time spent learning things off doesn’t seem as important now, and we are moving our focus to asking students to think about what questions are asking, showing their understanding concisely in answers, etc. In other words, now that students have a chance to write as much as they want, the challenge instead becomes, what should they do to show they understand? (It’s like, I don’t know, closed-book exams aren’t a good way to assess or something, huh).

Anyway, to help with this I have produced the guide below for students. Hopefully it has some useful prompts in terms of getting focussed and keeping organised, thinking about “pivoting” (ugh) to the new assessment regime, along with Chris’ ongoing guidance re student support. I’ve reproduced the text below, if any of it is of use, please reproduce as you need. CC-by-CoronaVirus 4.0. (With thanks back to the internet for various bits of guidelines that fed into this.)

Supporting Students Study graphic

Text of graphic:

As we have moved quickly to online and remote learning and teaching, you may need to work to establish new study patterns. This will take a little time to get used to, so take your time, and take care of your wellbeing first.
This guide will outline how you can make a plan to adjust your studying and help you regain control of your work.
In this guide we’ll talk about:
» Staying organised
» Adjusting to new assessment protocols
» Connecting with others
» Keeping in touch with the School

You may need to adapt your study habits. Find out what works best for you and establish a regular pattern of work, ensuring you include downtime. This is a marathon, not a sprint!
1. Organise your notes and study
There has been a lot of upheaval in the last weeks of Semester. Your task is to manage your ongoing workload in an organised and coherent way. To do this you can:
make sure you know where all the materials are for each lecture course unit. Live lecture recordings will be in the Lecture Recordings area, with online classrooms in the Course Collaborate channel linked in each course;
make sure you know any revisions to the assessment protocols, so you can plan your study accordingly;
plan and keep track of your study tasks, including scheduling downtime;
note the contacts for each course lecturer;
share your plans with peers in your study group so that you can coordinate your work.
To keep your study focussed and on target, a suggestion is to divide each study day into thirds, with a study session or a scheduled downtime in each third.
In each study session, you can:
focus on reviewing the content of particular topics, drawing on lecture recordings as you need;
work through tutorial materials, discussing with peers in your study group through whatever electronic communication means you have decided on;
test out your understanding with past paper questions;
draw up a list of questions that you wish to discuss with your peers and with your lecturers.
In each session, stay focussed on one topic. Multi-tasking (or micro-tasking) is a very poor learning strategy (only about 2% of the population can multi-task). Work on one topic, wrap it up so that you can return to it easily (clear questions that need follow up), and move on.
In your study sessions, aim to establish a rhythm. Structure the time within each study session, by using, for example, the Pomodoro technique (e.g. a series of three 50 minutes on, 10 minutes break in one study session).

Remember to schedule downtime including full days away from study. Make sure you maintain your usual daily routines of personal care, eating, and social contact by phone or online.

2. Adjusting to new assessment protocols
Until recently, students’ study has been focussed on preparing for closed book exams. The new assessment protocols mean that these exams are now open book. This will mean some changes to your study requirements, but most importantly some additional focus on how you answer questions asked:
The guiding principle for closed-book exams on “making sure you answer the question asked” applies even more in open-book assessments. Students should read questions carefully and make sure that they answer what is being asked. Assessors will be looking to see whether students can concisely answer the question asked. This is the main challenge in open-book assessments.
When studying and reviewing past papers, check that you can identify exactly what is being asked. Remember, exam questions are written so that they can typically be answered in timed conditions, so assessors will look to see quality of your answers addressing the specific chemistry asked, rather than seeing all of their notes reproduced verbatim.
Continue to practice drawing chemical structures, diagrams, and any figures or graphs as you normally would. All of the work you produce for open-book assessments must be in your own hand.

Experience tells us that students often write lots of material, but don’t necessarily answer what is being asked. Make sure your study includes a focus on identifying what is being asked.

3. Connecting with others for study
Much of learning and revision is based around discussions, both among students and between students and staff. Make sure you keep connected as follows:
You should aim to contact lecturers with specific questions arising out of your study, or arising out of revision sessions and discussions with your peers. It is easier for lecturers to address specific questions. Lecturers may also be able to direct you to online reading in the face of library closure.
If you don’t understand a topic generally and don’t know where to start, even after reviewing materials, ask your lecturer for suitable reading. Reading about your topic in a wider context can often help with understanding.
Make sure to form discussion groups. If you are not already in a study group and want to be, the best person to start out with is your lab partner. From there, look to grow it to groups of 4 – 6. It is good when there is a mix of abilities—explaining something to others is very beneficial.
Working in study groups means that you can contact staff as a group with any questions emerging from study.

4. Re-invent the social space online!
One of the challenges over the coming weeks up to the assessment period will be staying focussed during periods of isolation. We’re all missing our lovely Museum, and in place of that, the School are scheduling regular online drop in sessions—these are informal and are intended for social contact as much as addressing any questions among students. Join in these sessions, even if it is only to listen.
All students should make an effort to check in on each other regularly. If someone has been absent from your group meetings or chat, check in with them to see that they are okay. If you aren’t getting responses within a day or two, let your Personal Tutor know.

Keep connected with your class, either as study groups or just social connections. Everyone will need a different level of social contact, but make sure there is someone there for you when you want to disconnect from study. Always remember that staff are available if you need someone to talk to.

5. Stay in touch with the School
If anything is troubling you, or you want to talk about how you are getting on generally, let us know. We can arrange Skype or phone calls at any time. The School’s Personal Tutor system is ready and waiting, and if you have any queries, contact your Personal Tutor, the Senior Personal Tutor (Chris Mowat), the Director of Postgraduate Teaching (Nanna Lilienkampf), or the Director of Teaching (Michael Seery).
All of us are ready to answer and address any queries you have. Even if you don’t have a specific query and just want to reach out, contact us:
Your Personal Tutor
Chris Mowat:
Nanna Lilienkampf:
Michael Seery:
General queries:
There are University resources available including student study resources in the Library and IAD and student support resources. For these, and full details of University guidance regarding COVID-19, see the website:
www.ed.ac.uk/news/covid-19/current-students

Chemistry, Pedagogy

Looking back on ten years of Chemistry Education Research and Practice

Over the last 10 years from 2010 – 2019, Chemistry Education Research and Practice, a free-to-access journal published by the RSC (of which I am currently Editor) has published 631 articles, which have been cited 5246 times (data from Web of Science). So what has been “hot” this last decade? It seems whatever way you cut it, it was flipped learning and organic chemistry… Below I’ve cut the citation statistics a few ways – these comments are based on citations rather than judgement on the work itself.

In terms of number of citations, Keith Taber’s perspective on the chemistry triplet tops the poll, with 115 citations on Web of Science (Clarivate) and 262 on Google Scholar. In fact the top 4 hits are perspectives or reviews.

Title Authors/ Year Source Total Citations (Google Scholar) Average per Year (Google Scholar Average)  Article Type
Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education Taber, Keith S. / 2013 Link 115 (262) 16.43 (37.4) Perspective
Rethinking chemistry: a learning progression on chemical thinking Sevian, Hannah; Talanquer, Vicente / 2014 Link 77 (136) 12.83 (22.7) Perspective
Education for Sustainable Development (ESD) and chemistry education Burmeister, Mareike; Rauch, Franz; Eilks, Ingo / 2012 Link 75 (210) 9.38 (26.2) Perspective
Flipped learning in higher education chemistry: emerging trends and potential directions Seery, Michael K. / 2015 Link 67 (145) 13.4 (29) Review
The flipped classroom for teaching organic chemistry in small classes: is it effective? Fautch, Jessica M. /2015 Link 66 (147) 13.2 (29.4) Article
Student attitudes toward flipping the general chemistry classroom Smith, J. Dominic / 2013 Link 61 (132) 8.71 (18.9) Article
A comparative study of traditional, inquiry-based, and research-based laboratory curricula: impacts on understanding of the nature of science Russell, Cianan B.; Weaver, Gabriela C. /2011 Link 54 (97) 6 (10.8) Article
Structure and evaluation of flipped chemistry courses: organic & spectroscopy, large and small, first to third year, English and French Flynn, Alison B. / 2015 Link 53 (102) 10.6 (20.4) Article
Development and validation of the implicit information from Lewis structures instrument (IILSI): do students connect structures with properties? Cooper, Melanie M.; Underwood, Sonia M.; Hilley, Caleb Z. / 2012 Link 51 (85) 6.38 (10.6) Article
Let’s teach how we think instead of what we know Talanquer, Vicente; Pollard, John / 2010 Link 49 (101) 4.9 (10.1) Article

A fairer way of looking at citations is the average number of citations per year. This means that older papers which have had a longer time to accumulate citations are averaged out. (However this is still not fair to recent papers, which will not have had a chance to be cited at all, or will not benefit from a cumulative citation effect). However, on this cut, Weaver’s paper on nature of science in the lab (this is an excellent paper which really should be better known), Cooper’s paper on IILSI, and Talanquer’s paper on teaching how to think drop out of the top 10, and the top 10 based on average citations become (new additions with *):

Title Authors Publication Date DOI Average per Year (Google average)  Article type
Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education Taber, Keith S. 2013 Link 16.43 (37.4) Perspective
Flipped learning in higher education chemistry: emerging trends and potential directions Seery, Michael K. 2015 Link 13.4 (29) Review
The flipped classroom for teaching organic chemistry in small classes: is it effective? Fautch, Jessica M. 2015 Link 13.2 (29.4) Article
Rethinking chemistry: a learning progression on chemical thinking Sevian, Hannah; Talanquer, Vicente 2014 Link 12.83 (22.7) Perspective
Structure and evaluation of flipped chemistry courses: organic & spectroscopy, large and small, first to third year, English and French Flynn, Alison B. 2015 Link 10.6 (20.4) Article
Education for Sustainable Development (ESD) and chemistry education Burmeister, Mareike; Rauch, Franz; Eilks, Ingo 2012 Link 9.38 (26.3) Perspective
*Flipped classroom modules for large enrollment general chemistry courses: a low barrier approach to increase active learning and improve student grades Eichler, Jack F.; Peeples, Junelyn 2016 Link 9 (20) Article
Student attitudes toward flipping the general chemistry classroom Smith, J. Dominic 2013 Link 8.71 (18.9) Article
*How flip teaching supports undergraduate chemistry laboratory learning Teo, Tang Wee; Tan, Kim Chwee Daniel; Yan, Yaw Kai; Teo, Yong Chua; Yeo, Leck Wee 2014 Link 8 (15.8) Article
*What is a hydrogen bond? Resonance covalency in the supramolecular domain Weinhold, Frank; Klein, Roger A. 2014 Link 8 (11) Perspective

Google Scholar shows much higher number of citations, as Google draws citations from a much broader range of sources. In general, while the order of articles may differ slightly, Google and Web of Science match up well, but there are some notable exceptions – James Nyachwaya’s paper Evaluation of chemical representations in physical chemistry textbooks jumps from 152nd in the Web of Science average list to 9th most average citations in Google Scholar and Bette Davidowitz’s paper on student generated micro-diagrams jumps from 72nd to 12th.

Finally, reviews and perspectives are naturally going to attract more citations, so just considering research articles, the top 10 most average citations are below. It seems it was the decade for flipped learning and organic chemistry!

Title Authors Publication Date DOI Total Citations Average per Year
The flipped classroom for teaching organic chemistry in small classes: is it effective? Fautch, Jessica M. 2015 Link 66 13.2
Structure and evaluation of flipped chemistry courses: organic & spectroscopy, large and small, first to third year, English and French Flynn, Alison B. 2015 Link 53 10.6
Flipped classroom modules for large enrollment general chemistry courses: a low barrier approach to increase active learning and improve student grades Eichler, Jack F.; Peeples, Junelyn 2016 Link 36 9
Student attitudes toward flipping the general chemistry classroom Smith, J. Dominic 2013 Link 61 8.71
How flip teaching supports undergraduate chemistry laboratory learning Teo, Tang Wee; Tan, Kim Chwee Daniel; Yan, Yaw Kai; Teo, Yong Chua; Yeo, Leck Wee 2014 Link 48 8
Development and validation of the implicit information from Lewis structures instrument (IILSI): do students connect structures with properties? Cooper, Melanie M.; Underwood, Sonia M.; Hilley, Caleb Z. 2012 Link 51 6.38
A comparative study of traditional, inquiry-based, and research-based laboratory curricula: impacts on understanding of the nature of science Russell, Cianan B.; Weaver, Gabriela C. 2011 Link 54 6
Characterizing illusions of competence in introductory chemistry students Pazicni, Samuel; Bauer, Christopher F. 2014 Link 32 5.33
Students’ interpretations of mechanistic language in organic chemistry before learning reactions Galloway, Kelli R.; Stoyanovich, Carlee; Flynn, Alison B. 2017 Link 16 5.33
Language of mechanisms: exam analysis reveals students’ strengths, strategies, and errors when using the electron-pushing formalism (curved arrows) in new reactions Flynn, Alison B.; Featherstone, Ryan B. 2017 Link 16 5.33